Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 82952 by TawaTawa1 last updated on 26/Feb/20

Show that:      y  +  (√(y^2  − 1))   ≥  1     and    0  <  y  −  (√(y^2  − 1))  ≤  1  if  y  ≥ 1

$$\mathrm{Show}\:\mathrm{that}:\:\:\:\:\:\:\mathrm{y}\:\:+\:\:\sqrt{\mathrm{y}^{\mathrm{2}} \:−\:\mathrm{1}}\:\:\:\geqslant\:\:\mathrm{1}\:\:\:\:\:\mathrm{and}\:\:\:\:\mathrm{0}\:\:<\:\:\mathrm{y}\:\:−\:\:\sqrt{\mathrm{y}^{\mathrm{2}} \:−\:\mathrm{1}}\:\:\leqslant\:\:\mathrm{1} \\ $$ $$\mathrm{if}\:\:\mathrm{y}\:\:\geqslant\:\mathrm{1} \\ $$

Answered by MJS last updated on 26/Feb/20

t^2 =y^2 −1  y=±(√(t^2 +1))∧y≥1 ⇒ y=(√(t^2 +1))  y+(√(y^2 −1))≥1  (√(t^2 +1))+∣t∣≥1  minimum of (√(t^2 +1)) is 1 at t=0  minimum of ∣t∣ is 0 at t=0  ⇒ (√(t^2 +1))+∣t∣≥1    0<y−(√(y^2 −1))≤1  0<(√(t^2 +1))−(√t^2 )≤1  (√t^2 )<(√(t^2 +1))≤(√t^2 )+1  (√t^2 )<(√(t^2 +1))  all sides >0 ⇒ we are allowed to square  t^2 <t^2 +1≤t^2 +1+2∣t∣ always true

$${t}^{\mathrm{2}} ={y}^{\mathrm{2}} −\mathrm{1} \\ $$ $${y}=\pm\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\wedge{y}\geqslant\mathrm{1}\:\Rightarrow\:{y}=\sqrt{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$ $${y}+\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\geqslant\mathrm{1} \\ $$ $$\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+\mid{t}\mid\geqslant\mathrm{1} \\ $$ $$\mathrm{minimum}\:\mathrm{of}\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{is}\:\mathrm{1}\:\mathrm{at}\:{t}=\mathrm{0} \\ $$ $$\mathrm{minimum}\:\mathrm{of}\:\mid{t}\mid\:\mathrm{is}\:\mathrm{0}\:\mathrm{at}\:{t}=\mathrm{0} \\ $$ $$\Rightarrow\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+\mid{t}\mid\geqslant\mathrm{1} \\ $$ $$ \\ $$ $$\mathrm{0}<{y}−\sqrt{{y}^{\mathrm{2}} −\mathrm{1}}\leqslant\mathrm{1} \\ $$ $$\mathrm{0}<\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}−\sqrt{{t}^{\mathrm{2}} }\leqslant\mathrm{1} \\ $$ $$\sqrt{{t}^{\mathrm{2}} }<\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\leqslant\sqrt{{t}^{\mathrm{2}} }+\mathrm{1} \\ $$ $$\sqrt{{t}^{\mathrm{2}} }<\sqrt{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$ $$\mathrm{all}\:\mathrm{sides}\:>\mathrm{0}\:\Rightarrow\:\mathrm{we}\:\mathrm{are}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{square} \\ $$ $${t}^{\mathrm{2}} <{t}^{\mathrm{2}} +\mathrm{1}\leqslant{t}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}\mid{t}\mid\:\mathrm{always}\:\mathrm{true} \\ $$

Commented byTawaTawa1 last updated on 26/Feb/20

God bless you sir. I appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Commented byTawaTawa1 last updated on 26/Feb/20

Sir, please  next one.   Q82953.

$$\mathrm{Sir},\:\mathrm{please}\:\:\mathrm{next}\:\mathrm{one}.\:\:\:\mathrm{Q82953}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com