Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82954 by john santu last updated on 26/Feb/20

∫ ((cos 4x−cos 2x)/(sin 4x−cos 2x)) dx

cos4xcos2xsin4xcos2xdx

Commented by john santu last updated on 26/Feb/20

let u= cos 2x ⇒ dx = −(du/(2(√(1−u^2 ))))  ⇒∫ (( 2u^2 −u−1)/(2u(√(1−u^2 ))−u)) × (du/(−2(√(1−u^2 ))))  ⇒ ∫ ((2u^2 −u−1)/(−4u(1−u^2 )+2u(√(1−u^2 )))) du  stuck

letu=cos2xdx=du21u22u2u12u1u2u×du21u22u2u14u(1u2)+2u1u2dustuck

Commented by MJS last updated on 26/Feb/20

always try t=tan (x/2) ⇔ x=2arctan t but in  this case we have only 2nx it′s enough to  let t=tan x  Weierstrass substitution:  t=tan (x/2) → dx=((2dt)/(1+t^2 )); sin x =((2t)/(1+t^2 )); cos x =((1−t^2 )/(1+t^2 ))

alwaystryt=tanx2x=2arctantbutinthiscasewehaveonly2nxitsenoughtolett=tanxWeierstrasssubstitution:t=tanx2dx=2dt1+t2;sinx=2t1+t2;cosx=1t21+t2

Commented by john santu last updated on 26/Feb/20

o yes sir. i′m forgot this method.  thank you mister mjs

oyessir.imforgotthismethod.thankyoumistermjs

Answered by MJS last updated on 26/Feb/20

∫((cos 4x −cos 2x)/(sin 4x −cos 2x))dx=       [t=tan x → dx=(dt/(t^2 +1))]  =2∫(((t^2 −3)t^2 )/((t−1)(t+1)(t−2−(√3))(t−2+(√3))(t^2 +1)))dt=  =(1/2)∫(dt/(t−1))+(1/6)∫(dt/(t+1))+((1+(√3))/6)∫(dt/(t−2−(√3)))+((1−(√3))/6)∫(dt/(t−2+(√3)))−∫(t/(t^2 +1))dt  and all of them are easy to solve

cos4xcos2xsin4xcos2xdx=[t=tanxdx=dtt2+1]=2(t23)t2(t1)(t+1)(t23)(t2+3)(t2+1)dt==12dtt1+16dtt+1+1+36dtt23+136dtt2+3tt2+1dtandallofthemareeasytosolve

Terms of Service

Privacy Policy

Contact: info@tinkutara.com