All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 82970 by mathmax by abdo last updated on 26/Feb/20
1)find∫dx(x2−1)92)calculate∫2+∞dx(x2−1)9
Commented by mathmax by abdo last updated on 26/Feb/20
1)letI=∫dx(x2−1)9⇒I=∫dx(x−1)9(x+1)9=∫dx(x−1x+1)9(x+1)18changementx−1x+1=tgivex−1=tx+t⇒(1−t)x=t+1⇒x=t+11−tdx=1−t+(t+1)(1−t)2dt=2(1−t)2dtandx+1=t+11−t+1=t+1+1−t1−t=21−tI=∫2(t−1)2.t9.(21−t)18dt=1217∫(t−1)18(t−1)2t9dt=1217∫(t−1)16t9dt=1217∫∑k=016C16ktk(−1)16−kt9dt217I=∑k=016(−1)kC16k∫tk−9dt=∑k=0andk≠816(−1)kC16k×1k−8tk−8+C168ln∣t∣+C=∑k=0andk≠816(−1)kk−8C16k(x−1x+1)k−8+C168ln∣x−1x+1∣+C⇒I=1217{∑k=0andk≠816(−1)kk−8C16k(x−1x+1)k−8+C168ln∣x−1x+1∣}+C
2)∫2+∞dx(x2−1)9=1217[∑k=0andk≠816(−1)kk−8C16k(x−1x+1)k−8+C168ln∣x−1x+1∣]2+∞=1217{∑k=0andk≠816(−1)kk−8C16k−∑k=0andk≠816(−1)kk−8C16k(13)k−8−C168ln(13)}=1217∑k=0andk≠816(−1)kk−8C16k(1−13k−8)+C168217ln(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com