All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 82985 by M±th+et£s last updated on 26/Feb/20
Answered by ~blr237~ last updated on 26/Feb/20
letn⩾2,bn≠0causea+b≠0and0<a<bwehavean=bn2bn−1andbn−1=2an−an−1sowegotbn−1=2bn2bn−1−bn−12bn−2⇔1=2(bnbn−1)2−(bn−1bn−2)letstatecn=bnbn−1wecanprovebyinductionthat∀n⩾20<an⩽bnwehavecn=1+cn−12(1)andcn∈[0,1]causecn=bnbn−1=anbnsothereexist∀n⩾2θn∈[0,π2]suchascn=cosθnUsing(1)wegetcosθn=cos(θn−12)cause0<x<π2→cosx>0suchas∀n⩾2θn∈[0,π2]wegetθn=θn−12.Afterθn=θ2(12)n−2∀n⩾2,fork⩾2wehavebkbk−1=cos(θ2(12)k−2)bn=b1∏nk=2(cos(θ22k−2))bn=b1cos(θ2)∏nk=3(sin(θ22k−3)2sin(θ22k−2))usingsin(2x)=2sinxcosxanditerationwegotbn=b1cos(θ2)sin(θ2)2n−1sin(θ22n−2)forn⩾2Nowlimn→∞bn=b1cos(θ2)sin(θ2)2θ2causelimn→∞sin(θ22n−2)12n−2=θ2usingc2=cosθ2andc2=b2b1b2b1=a2b1=12+a12b1=12+12a1bc2=12+1212+a2b
Commented by M±th+et£s last updated on 27/Feb/20
thankyousomuchsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com