Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 82985 by M±th+et£s last updated on 26/Feb/20

Answered by ~blr237~ last updated on 26/Feb/20

 let n≥2 ,  b_n ≠0   cause  a+b≠0  and  0<a<b   we have   a_n =(b_n ^2 /b_(n−1) )  and  b_(n−1) = 2a_n −a_(n−1)    so  we got   b_(n−1) =((2b_n ^2 )/(b_(n−1)  )) −(b_(n−1) ^2 /b_(n−2) )  ⇔ 1=2((b_n /b_(n−1) ))^2 −((b_(n−1) /b_(n−2) ))  let state   c_n =(b_n /b_(n−1) )     we can prove by induction that ∀ n≥2   0<a_n ≤ b_n     we  have   c_n =(√((1+c_(n−1) )/2))   (1)    and  c_n ∈[0,1]  cause c_n = (b_n /b_(n−1) )=(a_n /b_n )  so there exist  ∀  n≥2    θ_n ∈[0,(π/2)]  such as    c_n =cosθ_n     Using  (1)    we get   cosθ_n =cos((θ_(n−1) /2))  cause   0<x<(π/2) → cosx>0  such as  ∀ n≥2   θ_n ∈[0,(π/2)]    we get  θ_n =(θ_(n−1) /2) .After   θ_n =θ_2 ((1/2))^(n−2)   ∀  n≥2  ,   for  k≥2  we have    (b_k /b_(k−1) )=cos( θ_2 ((1/2))^(k−2) )  b_n =b_1  Π_(k=2) ^n (cos((θ_2 /2^(k−2) )))  b_n =b_1 cos(θ_2 )Π_(k=3) ^n (((sin((θ_2 /2^(k−3) )))/(2sin((θ_2 /2^(k−2) )))))    using   sin(2x)=2sinxcosx  and  iteration  we got  b_n = ((b_1 cos(θ_2 )sin(θ_2 ))/(2^(n−1) sin((θ_2 /2^(n−2) ))))    for  n≥2    Now   lim_(n→∞)  b_n = ((b_1 cos(θ_2 )sin(θ_2 ))/(2θ_2 ))    cause lim_(n→∞)  ((sin((θ_2 /2^(n−2) )))/(1/2^(n−2) ))=θ_2    using     c_2 =cosθ_2   and   c_2 =(b_2 /(b_1  ))   (b_2 /b_1 )=(√((a_2 /b_1 ) )) =(√((1/2)+(a_1 /(2b_1 )) _ )) =(√((1/2)+(1/2)(√(a_1 /b))))     c_2 =(√((1/2)+(1/2)(√((1/2)+(a/(2b))))))

letn2,bn0causea+b0and0<a<bwehavean=bn2bn1andbn1=2anan1sowegotbn1=2bn2bn1bn12bn21=2(bnbn1)2(bn1bn2)letstatecn=bnbn1wecanprovebyinductionthatn20<anbnwehavecn=1+cn12(1)andcn[0,1]causecn=bnbn1=anbnsothereexistn2θn[0,π2]suchascn=cosθnUsing(1)wegetcosθn=cos(θn12)cause0<x<π2cosx>0suchasn2θn[0,π2]wegetθn=θn12.Afterθn=θ2(12)n2n2,fork2wehavebkbk1=cos(θ2(12)k2)bn=b1nk=2(cos(θ22k2))bn=b1cos(θ2)nk=3(sin(θ22k3)2sin(θ22k2))usingsin(2x)=2sinxcosxanditerationwegotbn=b1cos(θ2)sin(θ2)2n1sin(θ22n2)forn2Nowlimnbn=b1cos(θ2)sin(θ2)2θ2causelimnsin(θ22n2)12n2=θ2usingc2=cosθ2andc2=b2b1b2b1=a2b1=12+a12b1=12+12a1bc2=12+1212+a2b

Commented by M±th+et£s last updated on 27/Feb/20

thank you so much sir

thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com