Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 83030 by Power last updated on 27/Feb/20

Answered by mr W last updated on 27/Feb/20

Commented by mr W last updated on 27/Feb/20

(a+b)^2 =a^2 +(2a−b)^2   ⇒b=(2/3)a  tan α=(a/(2a))=(1/2)  tan β=(b/(2a))=(1/3)  ((CB)/(sin (45+β)))=((GB)/(sin β))  CB=2a=((3 sin (45+β))/(sin β))=3×((√2)/2)(1+(1/(tan β)))  ⇒2a=((3(√2))/2)(1+3)=6(√2)  ((DH)/(sin α))=((DC)/(sin (45+α)))  x=((sin α)/(sin (45+α)))×2a=((√2)/(1+(1/(tan α))))×6(√2)  x=((√2)/(1+2))×6(√2)=4

$$\left({a}+{b}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +\left(\mathrm{2}{a}−{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{b}=\frac{\mathrm{2}}{\mathrm{3}}{a} \\ $$$$\mathrm{tan}\:\alpha=\frac{{a}}{\mathrm{2}{a}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\beta=\frac{{b}}{\mathrm{2}{a}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\frac{{CB}}{\mathrm{sin}\:\left(\mathrm{45}+\beta\right)}=\frac{{GB}}{\mathrm{sin}\:\beta} \\ $$$${CB}=\mathrm{2}{a}=\frac{\mathrm{3}\:\mathrm{sin}\:\left(\mathrm{45}+\beta\right)}{\mathrm{sin}\:\beta}=\mathrm{3}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\beta}\right) \\ $$$$\Rightarrow\mathrm{2}{a}=\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{3}\right)=\mathrm{6}\sqrt{\mathrm{2}} \\ $$$$\frac{{DH}}{\mathrm{sin}\:\alpha}=\frac{{DC}}{\mathrm{sin}\:\left(\mathrm{45}+\alpha\right)} \\ $$$${x}=\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\mathrm{45}+\alpha\right)}×\mathrm{2}{a}=\frac{\sqrt{\mathrm{2}}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}}×\mathrm{6}\sqrt{\mathrm{2}} \\ $$$${x}=\frac{\sqrt{\mathrm{2}}}{\mathrm{1}+\mathrm{2}}×\mathrm{6}\sqrt{\mathrm{2}}=\mathrm{4} \\ $$

Commented by Power last updated on 27/Feb/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com