All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 83074 by ~blr237~ last updated on 27/Feb/20
findallfunctionsatisfying∀x∈R∖{kπ,k∈Z}f(x)+∫01f2(x)dx=xsin(πx)
Commented by mr W last updated on 28/Feb/20
∫01f2(x)dx=k=constantf(x)=xsin(πx)−kf2(x)=x2sin2(πx)−2kxsinπx+k2∫01f2(x)dx=∫01x2dxsin2(πx)−2k∫01xdxsinπx+k2=kk2−(1+2∫01xdxsinπx)k+∫01x2dxsin2(πx)=0k2−(1+2A)k+B=0⇒k=1+2A±(1+2A)2−4B2⇒f(x)=xsin(πx)−1+2A±(1+2A)2−4B2withA=∫01xdxsinπx=1π2∫0πtdtsintB=∫01x2dxsin2(πx)=1π3∫0πt2dtsin2tbutAandBmaynotexist,sothequestionmaybewrong.
Commented by ~blr237~ last updated on 28/Feb/20
nicesir!thebothdon′texist:it′sfeelassometimesit′snoteasytoprovethatthesolutionsetofanequationisempty
Terms of Service
Privacy Policy
Contact: info@tinkutara.com