Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 83074 by ~blr237~ last updated on 27/Feb/20

find all function  satisfying  ∀ x∈R\{kπ ,  k∈Z}  f(x)+∫_0 ^1 f^2 (x)dx=(x/(sin(πx)))

findallfunctionsatisfyingxR{kπ,kZ}f(x)+01f2(x)dx=xsin(πx)

Commented by mr W last updated on 28/Feb/20

∫_0 ^1 f^2 (x)dx=k=constant  f(x)=(x/(sin(πx)))−k  f^2 (x)=(x^2 /(sin^2 (πx)))−2k(x/(sin πx))+k^2   ∫_0 ^1 f^2 (x)dx=∫_0 ^1 ((x^2 dx)/(sin^2 (πx)))−2k∫_0 ^1 ((xdx)/(sin πx))+k^2 =k  k^2 −(1+2∫_0 ^1 ((xdx)/(sin πx)))k+∫_0 ^1 ((x^2 dx)/(sin^2 (πx)))=0  k^2 −(1+2A)k+B=0  ⇒k=((1+2A±(√((1+2A)^2 −4B)))/2)  ⇒f(x)=(x/(sin(πx)))−((1+2A±(√((1+2A)^2 −4B)))/2)  with  A=∫_0 ^1 ((xdx)/(sin πx))=(1/π^2 )∫_0 ^π ((tdt)/(sin t))  B=∫_0 ^1 ((x^2 dx)/(sin^2 (πx)))=(1/π^3 )∫_0 ^π ((t^2 dt)/(sin^2  t))  but A and B may not exist, so the  question may be wrong.

01f2(x)dx=k=constantf(x)=xsin(πx)kf2(x)=x2sin2(πx)2kxsinπx+k201f2(x)dx=01x2dxsin2(πx)2k01xdxsinπx+k2=kk2(1+201xdxsinπx)k+01x2dxsin2(πx)=0k2(1+2A)k+B=0k=1+2A±(1+2A)24B2f(x)=xsin(πx)1+2A±(1+2A)24B2withA=01xdxsinπx=1π20πtdtsintB=01x2dxsin2(πx)=1π30πt2dtsin2tbutAandBmaynotexist,sothequestionmaybewrong.

Commented by ~blr237~ last updated on 28/Feb/20

nice sir !  the both don′t exist  :it′s  feel as sometimes it′s not easy to prove that the solution set of an   equation is empty

nicesir!thebothdontexist:itsfeelassometimesitsnoteasytoprovethatthesolutionsetofanequationisempty

Terms of Service

Privacy Policy

Contact: info@tinkutara.com