Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 83078 by mhmd last updated on 27/Feb/20

If   I_1 =∫_e ^e^2   (dx/(log x))  and  I_2 = ∫_( 1) ^2  (e^x /x) dx, then

$$\mathrm{If}\:\:\:{I}_{\mathrm{1}} =\underset{{e}} {\overset{{e}^{\mathrm{2}} } {\int}}\:\frac{{dx}}{\mathrm{log}\:{x}}\:\:\mathrm{and}\:\:{I}_{\mathrm{2}} =\:\underset{\:\mathrm{1}} {\overset{\mathrm{2}} {\int}}\:\frac{{e}^{{x}} }{{x}}\:{dx},\:\mathrm{then} \\ $$

Commented by mathmax by abdo last updated on 27/Feb/20

I_1 =_(lnx=t)    ∫_1 ^2  ((e^t  dt)/t) ⇒ I_1 =I_2   at form of serie I_1 =∫_1 ^2  (1/t)(Σ_(n=0) ^∞  (t^n /(n!)))dt  =∫_1 ^2 (dt/t) +∫_1 ^2 Σ_(n=1) ^∞  (t^(n−1) /(n!))dt =ln(2)+Σ_(n=1) ^∞ (1/(n!)) ∫_1 ^2  t^(n−1)  dt  =ln(2)+Σ_(n=1) ^∞  (1/(n!))×[(1/n)t^n ]_1 ^2  =ln(2)+Σ_(n=1) ^∞  (1/(n×n!))(2^n −1)

$${I}_{\mathrm{1}} =_{{lnx}={t}} \:\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{{e}^{{t}} \:{dt}}{{t}}\:\Rightarrow\:{I}_{\mathrm{1}} ={I}_{\mathrm{2}} \\ $$$${at}\:{form}\:{of}\:{serie}\:{I}_{\mathrm{1}} =\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\mathrm{1}}{{t}}\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{t}^{{n}} }{{n}!}\right){dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{dt}}{{t}}\:+\int_{\mathrm{1}} ^{\mathrm{2}} \sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{t}^{{n}−\mathrm{1}} }{{n}!}{dt}\:={ln}\left(\mathrm{2}\right)+\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}!}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:{t}^{{n}−\mathrm{1}} \:{dt} \\ $$$$={ln}\left(\mathrm{2}\right)+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}×\left[\frac{\mathrm{1}}{{n}}{t}^{{n}} \right]_{\mathrm{1}} ^{\mathrm{2}} \:={ln}\left(\mathrm{2}\right)+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}×{n}!}\left(\mathrm{2}^{{n}} −\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com