Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 83144 by M±th+et£s last updated on 28/Feb/20

show that  Σ_(n=1) ^∞ (1/((2n−1)(3n−1)))=(1/6)((√3) π−9log(3)+log(4096))

showthatn=11(2n1)(3n1)=16(3π9log(3)+log(4096))

Answered by mind is power last updated on 28/Feb/20

=(1/6)Σ_(n=1) ^(+∞) (1/((n−(1/2))(n−(1/3))))  =(1/6)Σ_(n=0) ^(+∞) (1/((n+(1/2))(n+(2/3))))=(1/6).((Ψ((2/3))−Ψ((1/2)))/((2/3)−(1/2)))  Ψ((2/3))=−γ−ln(6)−(π/2)cot(((2π)/3))+2cos(((4π)/3))ln(sin(π/3))  Ψ((1/2))=−γ−ln(4)  Ψ((2/3))−Ψ((1/2))=ln((2/3))+(π/(2(√3)))−ln(((√3)/2))  ((Ψ((2/3))−Ψ((1/2)))/((2/3)−(1/2)))=6(Ψ((2/3))−Ψ((1/2)))=6((π/(2(√3)))+ln(2)−ln(3)−(1/2)ln(3)+ln(2))  =π(√3)+ln(2^(12) )−3ln(3)=π(√3)+ln(4096)−9ln(3)  Σ_(n=1) ^(+∞) (1/((2n−1)(3n−1)))=(1/6).(π(√3)−9ln(3)+ln(4096))

=16+n=11(n12)(n13)=16+n=01(n+12)(n+23)=16.Ψ(23)Ψ(12)2312Ψ(23)=γln(6)π2cot(2π3)+2cos(4π3)ln(sinπ3)Ψ(12)=γln(4)Ψ(23)Ψ(12)=ln(23)+π23ln(32)Ψ(23)Ψ(12)2312=6(Ψ(23)Ψ(12))=6(π23+ln(2)ln(3)12ln(3)+ln(2))=π3+ln(212)3ln(3)=π3+ln(4096)9ln(3)+n=11(2n1)(3n1)=16.(π39ln(3)+ln(4096))

Commented by mind is power last updated on 28/Feb/20

Ψ((p/q))=−γ−ln(2q)−(π/2)cot(((pπ)/q))+2Σ_(n=1) ^([((q−1)/2)]) cos(((2πnp)/q))ln(sin((πn)/q))

Ψ(pq)=γln(2q)π2cot(pπq)+2[q12]n=1cos(2πnpq)ln(sinπnq)

Commented by M±th+et£s last updated on 28/Feb/20

god bless you sir

godblessyousir

Commented by msup trace by abdo last updated on 28/Feb/20

define Φ sir mind....

defineΦsirmind....

Commented by mathmax by abdo last updated on 28/Feb/20

thank you sir mind

thankyousirmind

Commented by mind is power last updated on 28/Feb/20

withe pleasur sir

withepleasursir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com