Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 83189 by john santu last updated on 28/Feb/20

find the 3^(rd)  derivative of   x^5  ln(2x) using the Leibniz theorem

$$\mathrm{find}\:\mathrm{the}\:\mathrm{3}\:^{\mathrm{rd}} \:\mathrm{derivative}\:\mathrm{of}\: \\ $$$$\mathrm{x}^{\mathrm{5}} \:\mathrm{ln}\left(\mathrm{2x}\right)\:\mathrm{using}\:\mathrm{the}\:\mathrm{Leibniz}\:\mathrm{theorem} \\ $$

Commented by jagoll last updated on 28/Feb/20

y = x^5  ln(2x)  y ′(x) = 5x^4  ln(2x) + ((2x^5 )/(2x))  y′(x) = 5x^4  ln(2x)+ x^4   y′′(x)= 20x^3  ln(2x)+ ((10x^4 )/(2x))+4x^3   y′′ (x) = 20x^3  ln(2x) + 9x^3   y′′′(x) = 60x^2  ln(2x) + ((40x^3 )/(2x))+27x^2   y′′′(x) = 60x^2  ln(2x) + 47x^2

$$\mathrm{y}\:=\:\mathrm{x}^{\mathrm{5}} \:\mathrm{ln}\left(\mathrm{2x}\right) \\ $$$$\mathrm{y}\:'\left(\mathrm{x}\right)\:=\:\mathrm{5x}^{\mathrm{4}} \:\mathrm{ln}\left(\mathrm{2x}\right)\:+\:\frac{\mathrm{2x}^{\mathrm{5}} }{\mathrm{2x}} \\ $$$$\mathrm{y}'\left(\mathrm{x}\right)\:=\:\mathrm{5x}^{\mathrm{4}} \:\mathrm{ln}\left(\mathrm{2x}\right)+\:\mathrm{x}^{\mathrm{4}} \\ $$$$\mathrm{y}''\left(\mathrm{x}\right)=\:\mathrm{20x}^{\mathrm{3}} \:\mathrm{ln}\left(\mathrm{2x}\right)+\:\frac{\mathrm{10x}^{\mathrm{4}} }{\mathrm{2x}}+\mathrm{4x}^{\mathrm{3}} \\ $$$$\mathrm{y}''\:\left(\mathrm{x}\right)\:=\:\mathrm{20x}^{\mathrm{3}} \:\mathrm{ln}\left(\mathrm{2x}\right)\:+\:\mathrm{9x}^{\mathrm{3}} \\ $$$$\mathrm{y}'''\left(\mathrm{x}\right)\:=\:\mathrm{60x}^{\mathrm{2}} \:\mathrm{ln}\left(\mathrm{2x}\right)\:+\:\frac{\mathrm{40x}^{\mathrm{3}} }{\mathrm{2x}}+\mathrm{27x}^{\mathrm{2}} \\ $$$$\mathrm{y}'''\left(\mathrm{x}\right)\:=\:\mathrm{60x}^{\mathrm{2}} \:\mathrm{ln}\left(\mathrm{2x}\right)\:+\:\mathrm{47x}^{\mathrm{2}} \\ $$

Commented by mr W last updated on 28/Feb/20

(x^5 ln (2x))^((3))   =x^5 ((2/x^3 ))+3(5x^4 )(−(1/x^2 ))+3(20x^3 )((1/x))+(60x^2 )ln (2x)  =2x^2 −15x^2 +60x^2 +60x^2  ln (2x)  =x^2 (47+60 ln (2x))

$$\left({x}^{\mathrm{5}} \mathrm{ln}\:\left(\mathrm{2}{x}\right)\right)^{\left(\mathrm{3}\right)} \\ $$$$={x}^{\mathrm{5}} \left(\frac{\mathrm{2}}{{x}^{\mathrm{3}} }\right)+\mathrm{3}\left(\mathrm{5}{x}^{\mathrm{4}} \right)\left(−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)+\mathrm{3}\left(\mathrm{20}{x}^{\mathrm{3}} \right)\left(\frac{\mathrm{1}}{{x}}\right)+\left(\mathrm{60}{x}^{\mathrm{2}} \right)\mathrm{ln}\:\left(\mathrm{2}{x}\right) \\ $$$$=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{15}{x}^{\mathrm{2}} +\mathrm{60}{x}^{\mathrm{2}} +\mathrm{60}{x}^{\mathrm{2}} \:\mathrm{ln}\:\left(\mathrm{2}{x}\right) \\ $$$$={x}^{\mathrm{2}} \left(\mathrm{47}+\mathrm{60}\:\mathrm{ln}\:\left(\mathrm{2}{x}\right)\right) \\ $$

Commented by mathmax by abdo last updated on 28/Feb/20

direct calculus f(x)=x^5 ln(2x) ⇒  f^((1)) (x)=5x^4 ln(2x) +x^5 ×(1/x) =5x^4 ln(2x)+x^4   f^((2)) (x)=20x^3 ln(2x)+5x^4 ×(1/x) +4x^3  =20x^3 ln(2x)+5x^3  +4x^3   =20x^3 ln(2x)+9x^3  ⇒f^((3)) (x)=60x^2 ln(2x)+20x^3 ×(1/x) +27x^2   =60x^2 ln(2x) +47 x^2  =x^2 {60ln(2x)+47}

$${direct}\:{calculus}\:{f}\left({x}\right)={x}^{\mathrm{5}} {ln}\left(\mathrm{2}{x}\right)\:\Rightarrow \\ $$$${f}^{\left(\mathrm{1}\right)} \left({x}\right)=\mathrm{5}{x}^{\mathrm{4}} {ln}\left(\mathrm{2}{x}\right)\:+{x}^{\mathrm{5}} ×\frac{\mathrm{1}}{{x}}\:=\mathrm{5}{x}^{\mathrm{4}} {ln}\left(\mathrm{2}{x}\right)+{x}^{\mathrm{4}} \\ $$$${f}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{20}{x}^{\mathrm{3}} {ln}\left(\mathrm{2}{x}\right)+\mathrm{5}{x}^{\mathrm{4}} ×\frac{\mathrm{1}}{{x}}\:+\mathrm{4}{x}^{\mathrm{3}} \:=\mathrm{20}{x}^{\mathrm{3}} {ln}\left(\mathrm{2}{x}\right)+\mathrm{5}{x}^{\mathrm{3}} \:+\mathrm{4}{x}^{\mathrm{3}} \\ $$$$=\mathrm{20}{x}^{\mathrm{3}} {ln}\left(\mathrm{2}{x}\right)+\mathrm{9}{x}^{\mathrm{3}} \:\Rightarrow{f}^{\left(\mathrm{3}\right)} \left({x}\right)=\mathrm{60}{x}^{\mathrm{2}} {ln}\left(\mathrm{2}{x}\right)+\mathrm{20}{x}^{\mathrm{3}} ×\frac{\mathrm{1}}{{x}}\:+\mathrm{27}{x}^{\mathrm{2}} \\ $$$$=\mathrm{60}{x}^{\mathrm{2}} {ln}\left(\mathrm{2}{x}\right)\:+\mathrm{47}\:{x}^{\mathrm{2}} \:={x}^{\mathrm{2}} \left\{\mathrm{60}{ln}\left(\mathrm{2}{x}\right)+\mathrm{47}\right\} \\ $$

Commented by jagoll last updated on 28/Feb/20

what generally Leibniz theorem sir

$$\mathrm{what}\:\mathrm{generally}\:\mathrm{Leibniz}\:\mathrm{theorem}\:\mathrm{sir} \\ $$

Commented by jagoll last updated on 28/Feb/20

yes sir. thank you

$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by mathmax by abdo last updated on 29/Feb/20

if the functions f and g are C^n  on I⊂R (or C) we have  (f.g)^((n)) =Σ_(k=0) ^n  C_n ^k  f^((k)) g^((n−k) )  (leibniz formula for derivation)

$${if}\:{the}\:{functions}\:{f}\:{and}\:{g}\:{are}\:{C}^{{n}} \:{on}\:{I}\subset{R}\:\left({or}\:{C}\right)\:{we}\:{have} \\ $$$$\left({f}.{g}\right)^{\left({n}\right)} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{f}^{\left({k}\right)} {g}^{\left({n}−{k}\right)\:} \:\left({leibniz}\:{formula}\:{for}\:{derivation}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com