Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 83202 by Rio Michael last updated on 28/Feb/20

 find the first 4 terms in the maclaurin[  series expansion for ln (1 + 3x) hence show that  if x^2  and higher powers of x are negleted,  then      (1 + 3x)^(3/x)  = e^6 (1 −9x)

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{4}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{maclaurin}\left[\right. \\ $$$$\mathrm{series}\:\mathrm{expansion}\:\mathrm{for}\:\mathrm{ln}\:\left(\mathrm{1}\:+\:\mathrm{3}{x}\right)\:\mathrm{hence}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{if}\:{x}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{higher}\:\mathrm{powers}\:\mathrm{of}\:{x}\:\mathrm{are}\:\mathrm{negleted}, \\ $$$$\mathrm{then}\: \\ $$$$\:\:\:\left(\mathrm{1}\:+\:\mathrm{3}{x}\right)^{\frac{\mathrm{3}}{{x}}} \:=\:{e}^{\mathrm{6}} \left(\mathrm{1}\:−\mathrm{9}{x}\right) \\ $$

Commented by mr W last updated on 28/Feb/20

i think the question is wrong. please  check sir!  f(x)=(1 + 3x)^(3/x)   g(x) = e^6 (1 −9x)  f(0)≠g(0)  f′(0)≠g′(0)  ⇒f(x)≈g(x) is not true!    i think correct is  (1 + 3x)^(3/x)  ≈e^9 (1 −((27)/2)x)

$${i}\:{think}\:{the}\:{question}\:{is}\:{wrong}.\:{please} \\ $$$${check}\:{sir}! \\ $$$${f}\left({x}\right)=\left(\mathrm{1}\:+\:\mathrm{3}{x}\right)^{\frac{\mathrm{3}}{{x}}} \\ $$$${g}\left({x}\right)\:=\:{e}^{\mathrm{6}} \left(\mathrm{1}\:−\mathrm{9}{x}\right) \\ $$$${f}\left(\mathrm{0}\right)\neq{g}\left(\mathrm{0}\right) \\ $$$${f}'\left(\mathrm{0}\right)\neq{g}'\left(\mathrm{0}\right) \\ $$$$\Rightarrow{f}\left({x}\right)\approx{g}\left({x}\right)\:{is}\:{not}\:{true}! \\ $$$$ \\ $$$${i}\:{think}\:{correct}\:{is} \\ $$$$\left(\mathrm{1}\:+\:\mathrm{3}{x}\right)^{\frac{\mathrm{3}}{{x}}} \:\approx{e}^{\mathrm{9}} \left(\mathrm{1}\:−\frac{\mathrm{27}}{\mathrm{2}}{x}\right) \\ $$

Commented by Rio Michael last updated on 28/Feb/20

thanks sir, i met that   question in an exam   and i concluded as follows:  ln (1 + 3x)^(3/x)  ⇏ (1 +3x)^((3/x) ) ≠ e^6 (1−9x)  hope its legit sir

$${thanks}\:{sir},\:{i}\:{met}\:{that}\: \\ $$$${question}\:{in}\:{an}\:{exam}\: \\ $$$${and}\:{i}\:{concluded}\:{as}\:{follows}: \\ $$$$\mathrm{ln}\:\left(\mathrm{1}\:+\:\mathrm{3}{x}\right)^{\frac{\mathrm{3}}{{x}}} \:\nRightarrow\:\left(\mathrm{1}\:+\mathrm{3}{x}\right)^{\frac{\mathrm{3}}{{x}}\:} \neq\:{e}^{\mathrm{6}} \left(\mathrm{1}−\mathrm{9}{x}\right) \\ $$$${hope}\:{its}\:{legit}\:{sir} \\ $$

Commented by mr W last updated on 28/Feb/20

ln (1+3x)=(3x)−(((3x)^2 )/2)+(((3x)^3 )/3)−(((3x)^4 )/4)+...  ln (1+3x)=3x−((9x^2 )/2)+((27x^3 )/3)−((81x^4 )/4)+...  (3/x)ln (1+3x)=9−((27x)/2)+((81x^2 )/3)−((243x^3 )/4)+...  (1+3x)^(3/x) =e^((3/x)ln (1+3x)) =e^(9−((27x)/2)+((81x^2 )/3)−((243x^3 )/4)+...)   ≈e^(9−((27x)/2)) =e^9 e^(−((27)/2)x) =e^9 (1−((27)/2)x+(1/2)(((27)/2)x)^2 ...)  ≈e^9 (1−((27)/2)x)

$$\mathrm{ln}\:\left(\mathrm{1}+\mathrm{3}{x}\right)=\left(\mathrm{3}{x}\right)−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{2}} }{\mathrm{2}}+\frac{\left(\mathrm{3}{x}\right)^{\mathrm{3}} }{\mathrm{3}}−\frac{\left(\mathrm{3}{x}\right)^{\mathrm{4}} }{\mathrm{4}}+... \\ $$$$\mathrm{ln}\:\left(\mathrm{1}+\mathrm{3}{x}\right)=\mathrm{3}{x}−\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{27}{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{81}{x}^{\mathrm{4}} }{\mathrm{4}}+... \\ $$$$\frac{\mathrm{3}}{{x}}\mathrm{ln}\:\left(\mathrm{1}+\mathrm{3}{x}\right)=\mathrm{9}−\frac{\mathrm{27}{x}}{\mathrm{2}}+\frac{\mathrm{81}{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{\mathrm{243}{x}^{\mathrm{3}} }{\mathrm{4}}+... \\ $$$$\left(\mathrm{1}+\mathrm{3}{x}\right)^{\frac{\mathrm{3}}{{x}}} ={e}^{\frac{\mathrm{3}}{{x}}\mathrm{ln}\:\left(\mathrm{1}+\mathrm{3}{x}\right)} ={e}^{\mathrm{9}−\frac{\mathrm{27}{x}}{\mathrm{2}}+\frac{\mathrm{81}{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{\mathrm{243}{x}^{\mathrm{3}} }{\mathrm{4}}+...} \\ $$$$\approx{e}^{\mathrm{9}−\frac{\mathrm{27}{x}}{\mathrm{2}}} ={e}^{\mathrm{9}} {e}^{−\frac{\mathrm{27}}{\mathrm{2}}{x}} ={e}^{\mathrm{9}} \left(\mathrm{1}−\frac{\mathrm{27}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{27}}{\mathrm{2}}{x}\right)^{\mathrm{2}} ...\right) \\ $$$$\approx{e}^{\mathrm{9}} \left(\mathrm{1}−\frac{\mathrm{27}}{\mathrm{2}}{x}\right) \\ $$

Commented by Rio Michael last updated on 28/Feb/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com