Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83206 by mathmax by abdo last updated on 28/Feb/20

1) find ∫_0 ^(π/4)  (dx/(2+a sinx))    (areal)  2) c explicite ∫_0 ^(π/4)  ((sinx)/((2+asinx)^2 ))dx

1)find0π4dx2+asinx(areal)2)cexplicite0π4sinx(2+asinx)2dx

Commented by mathmax by abdo last updated on 29/Feb/20

1) let f(a)=∫_0 ^(π/4)  (dx/(2+asinx)) changement tan((x/2))=t give  f(a) =∫_0 ^((√2)−1)    ((2dt)/((1+t^2 )(2+a((2t)/(1+t^2 ))))) =2∫_0 ^((√2)−1)  (dt/(2+2t^2 +2at))  =∫_0 ^((√2)−1)  (dt/(t^2  +at +1))  t^2  +at+1=0→Δ=a^2 −4  if ∣a∣>2 ⇒ Δ>0 ⇒t_1 =((−a+(√(a^2 −4)))/2) and t_2 =((−a−(√(a^2 −4)))/2)  ⇒f(a) =∫_0 ^((√2)−1)  (dt/((t−t_1 )(t−t_2 ))) =(1/(t−t_2 ))∫_0 ^((√2)−1) ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/(√(a^2 −4))) [ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^((√2)−1)  =(1/(√(a^2 −4))){ln∣(((√2)−1−((−a+(√(a^2 −4)))/2))/((√2)−1−((−a−(√(a^2 −4)))/2)))∣  −ln∣((−a+(√(a^2 −4)))/(−a−(√(a^2 −4))))∣}=(1/(√(a^2 −4))){ln∣((2(√2)−2+a−(√(a^2 −4)))/(2(√2)−2+a+(√(a^2 −4))))∣  −ln∣((a−(√(a^2 −4)))/(a+(√(a^2 −4))))∣  if ∣a∣<2 ⇒Δ<0 ⇒f(a)=∫_0 ^((√2)−1)  (dt/(t^2  +((2at)/2) +(a^2 /4)+1−(a^2 /4)))  =∫_0 ^((√2)−1)  (dt/((t+(a/2))^2  +((4−a^2 )/4))) =_(t+(a/2)=((√(4−a^2 ))/2)u→u=((2t+a)/(√(4−a^2 )))) (4/(4−a^2 ))   ∫_(a/(√(4−a^2 ))) ^((2(√2)−2+a)/(√(4−a^2 )))    (1/(1+u^2 ))×((√(4−a^2 ))/2)du  =(2/(√(4−a^2 )))[arctanu]_(a/(√(4−a^2 ))) ^((2(√2)−2+a)/(√(4−a^2 )))    =(2/(√(4−a^2 ))){ arctan(((2(√2)−2+a)/(√(4−a^2 ))))  −arctan((a/(√(4−a^2 ))))}

1)letf(a)=0π4dx2+asinxchangementtan(x2)=tgivef(a)=0212dt(1+t2)(2+a2t1+t2)=2021dt2+2t2+2at=021dtt2+at+1t2+at+1=0Δ=a24ifa∣>2Δ>0t1=a+a242andt2=aa242f(a)=021dt(tt1)(tt2)=1tt2021(1tt11tt2)dt=1a24[lntt1tt2]021=1a24{ln21a+a24221aa242lna+a24aa24}=1a24{ln222+aa24222+a+a24lnaa24a+a24ifa∣<2Δ<0f(a)=021dtt2+2at2+a24+1a24=021dt(t+a2)2+4a24=t+a2=4a22uu=2t+a4a244a2a4a2222+a4a211+u2×4a22du=24a2[arctanu]a4a2222+a4a2=24a2{arctan(222+a4a2)arctan(a4a2)}

Commented by mathmax by abdo last updated on 29/Feb/20

2)we have f(a)=∫_0 ^(π/4) (dx/(2+asinx)) ⇒f^′ (a)=−∫_0 ^(π/4)  ((sinx dx)/((2+asinx)^2 )) ⇒  ∫_0 ^(π/4)  ((sinx dx)/((2+asinx)^2 )) =−f^′ (a)  rest the calculus of f^′ (a)...be continued...

2)wehavef(a)=0π4dx2+asinxf(a)=0π4sinxdx(2+asinx)20π4sinxdx(2+asinx)2=f(a)restthecalculusoff(a)...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com