Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 83209 by ~blr237~ last updated on 28/Feb/20

   Prove that  ∀  x≠(π/4)   ,  Π_(n=0) ^∞ (((cos((x/2^n ))+cos(((π−2x)/2^(n+1) )))/2) ) = ((4cos2x)/(π(π−4x)))

Provethatxπ4,n=0(cos(x2n)+cos(π2x2n+1)2)=4cos2xπ(π4x)

Answered by mind is power last updated on 28/Feb/20

cos(a)+cos(b)=2cos(((a+b)/2))cos(((a−b)/2))  cos((π/2^(n+2) ))cos(((4x−π)/2^(n+2) ))  Π_(n=0) ^N cos((a/2^(n ) ))=(1/(sin((a/2^N ))))Π_(n=0) ^N cos((a/2^n )).sin((a/2^N ))  ⇒Π_(n=0) ^N cos((a/2^n ))=((sin(2a))/(2^(N+1) sin((a/2^N ))))  limN→0=((sin(2a))/(2a))  Π_(n=0) ^N cos((π/(4.2^n )))=((sin((π/2)))/(2^(N+1) sin((π/(4.2^N )))))→(2/π)  Π_(n=0) ^N cos(((4x−π)/(2^n .2)))=((sin(((4x−π)/2)))/((((4x−π)/2))))=((2sin(2x−(π/2)))/(4x−π))=((2cos(2x))/(π−4x))  ⇒we get .(2/π).((2cos(2x))/(π−4x))=((4cos(2x))/(π(π−4x)))

cos(a)+cos(b)=2cos(a+b2)cos(ab2)cos(π2n+2)cos(4xπ2n+2)Nn=0cos(a2n)=1sin(a2N)Nn=0cos(a2n).sin(a2N)Nn=0cos(a2n)=sin(2a)2N+1sin(a2N)limN0=sin(2a)2aNn=0cos(π4.2n)=sin(π2)2N+1sin(π4.2N)2πNn=0cos(4xπ2n.2)=sin(4xπ2)(4xπ2)=2sin(2xπ2)4xπ=2cos(2x)π4xweget.2π.2cos(2x)π4x=4cos(2x)π(π4x)

Commented by ~blr237~ last updated on 28/Feb/20

nice sir

nicesir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com