Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 83214 by mathmax by abdo last updated on 28/Feb/20

calculate  U_n =Σ_(k=0) ^n  (1/(3k+1)) interms of H_n =Σ_(k=1) ^n  (1/k)

$${calculate}\:\:{U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}\:{interms}\:{of}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$

Answered by ~blr237~ last updated on 29/Feb/20

let  n≥1    H_(3n) =Σ_(k=1) ^(3n) (1/k)  = Σ_(k=1) ^n  (1/(3k)) +Σ_(k=0) ^(n−1) (1/(3k+1))+Σ_(k=0) ^(n−1)  (1/(3k+2))          =(1/3)H_n +U_(n−1) +V_(n−1)     (1)    where  V_n =Σ_(k=0) ^n  (1/(3k+2))  H_(3n+1) =Σ_(k=1) ^n (1/(3k)) +Σ_(k=0) ^n (1/(3k+1))+Σ_(k=0) ^(n−1) (1/(3k+2))     = (1/3)H_n +U_n +V_(n−1)     (2)  (2)−(1) ⇒ U_n −U_(n−1) = H_(3n+1) −H_(3n)     so  Σ_(k=1) ^n (U_k −U_(k−1) )=Σ_(k=1) ^n (H_(3k+1) −H_(3k) )  Then    U_n =U_0 +Σ_(k=1) ^n (H_(3k+1) −H_(3k) )

$${let}\:\:{n}\geqslant\mathrm{1}\:\: \\ $$$${H}_{\mathrm{3}{n}} =\underset{{k}=\mathrm{1}} {\overset{\mathrm{3}{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:\:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}{k}}\:+\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}+\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{2}}\: \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}{H}_{{n}} +{U}_{{n}−\mathrm{1}} +{V}_{{n}−\mathrm{1}} \:\:\:\:\left(\mathrm{1}\right)\:\:\:\:{where}\:\:{V}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{2}} \\ $$$${H}_{\mathrm{3}{n}+\mathrm{1}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{3}{k}}\:+\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{1}}+\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{3}{k}+\mathrm{2}} \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{3}}{H}_{{n}} +{U}_{{n}} +{V}_{{n}−\mathrm{1}} \:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{2}\right)−\left(\mathrm{1}\right)\:\Rightarrow\:{U}_{{n}} −{U}_{{n}−\mathrm{1}} =\:{H}_{\mathrm{3}{n}+\mathrm{1}} −{H}_{\mathrm{3}{n}} \\ $$$$\:\:{so}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({U}_{{k}} −{U}_{{k}−\mathrm{1}} \right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({H}_{\mathrm{3}{k}+\mathrm{1}} −{H}_{\mathrm{3}{k}} \right) \\ $$$${Then}\:\:\:\:{U}_{{n}} ={U}_{\mathrm{0}} +\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({H}_{\mathrm{3}{k}+\mathrm{1}} −{H}_{\mathrm{3}{k}} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com