Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83253 by mathmax by abdo last updated on 29/Feb/20

calculate ∫_0 ^∞  (dx/((x^4 −x^2  +1)^2 ))

calculate0dx(x4x2+1)2

Commented by abdomathmax last updated on 01/Mar/20

sorry the Q is calculate ∫_(−∞) ^(+∞)  (dx/((x^4 −x^2  +1)^2 ))

sorrytheQiscalculate+dx(x4x2+1)2

Commented by mathmax by abdo last updated on 01/Mar/20

let I =∫_(−∞) ^(+∞)  (dx/((x^4 −x^2  +1)^2 )) let ϕ(z)=(1/((z^4 −z^2 +1)^2 )) poles of ϕ?  z^4 −z^2  +1=0⇒t^2 −t+1=0   (t=z^2 )  Δ=1−4=−3 ⇒t_1 =((1+i(√3))/2) =e^((iπ)/3)  and t_2 =((1−i(√3))/2)=e^(−((iπ)/3))   t^2 −t+1 =(t−e^((iπ)/3) )(t−e^(−((iπ)/3)) ) ⇒z^4 −z^2   +1 =(z^2 −e^((iπ)/3) )(z^2 −e^((−iπ)/3) )  =(z−e^((iπ)/6) )(z+e^((iπ)/6) )(z−e^(−((iπ)/6)) )(z+e^((−iπ)/6) )⇒  ϕ(z)=(1/((z−e^((iπ)/6) )^2 (z+e^((iπ)/6) )^2 (z−e^(−((iπ)/6)) )^2 (z+e^(−((iπ)/6)) )^2 ))  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{Res(ϕ,e^((iπ)/6) )+Res(ϕ,−e^(−((iπ)/6)) )}  Res(ϕ,e^((iπ)/6) )=lim_(z→e^((iπ)/6) )    (1/((2−1)!)){(z−e^((iπ)/6) )^2 ϕ(z)}^((1))   =lim_(z→e^((iπ)/6) )    {(1/((z+e^((iπ)/6) )(z^2 −e^(−((iπ)/3)) )^2 ))}^((1))   =lim_(z→e^((iπ)/6) )   −(((z^2 −e^(−((iπ)/3)) )^2 +(z+e^((iπ)/6) )×(4z)(z^2 −e^(−((iπ)/3)) ))/((z+e^((iπ)/6) )^2 (z^2 −e^(−((iπ)/3)) )^4 ))  =−lim_(z→e^((iπ)/6) )     (((z^2 −e^(−((iπ)/3)) )+4z(z+e^((iπ)/6) ))/((z+e^((iπ)/6) )^2 (z^2 −e^(−((iπ)/3)) )^3 ))  =−((e^((iπ)/3) −e^(−((iπ)/3)) +4e^((iπ)/6) ×2e^((iπ)/6) )/((2e^((iπ)/6) )^2 (e^((iπ)/3) −e^(−((iπ)/3)) )^3 )) =−((2isin((π/3))+8 e^((iπ)/3) )/(2e^((iπ)/3) (2i)^3 sin^3 ((π/3))))  =−((isin((π/3))+4e^((iπ)/3) )/(−8i e^((iπ)/3)  sin^3 ((π/3)))) =e^(−((iπ)/3)) ×((sin((π/3))−4ie^((iπ)/3) )/(sin^3 ((π/3))))  =((sin((π/3))e^(−((iπ)/3))  −4i)/(8(((√3)/2))^3 )) =((((√3)/2)e^(−((iπ)/3)) −4i)/(3(√3)))  ....be continued...

letI=+dx(x4x2+1)2letφ(z)=1(z4z2+1)2polesofφ?z4z2+1=0t2t+1=0(t=z2)Δ=14=3t1=1+i32=eiπ3andt2=1i32=eiπ3t2t+1=(teiπ3)(teiπ3)z4z2+1=(z2eiπ3)(z2eiπ3)=(zeiπ6)(z+eiπ6)(zeiπ6)(z+eiπ6)φ(z)=1(zeiπ6)2(z+eiπ6)2(zeiπ6)2(z+eiπ6)2residustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ6)+Res(φ,eiπ6)}Res(φ,eiπ6)=limzeiπ61(21)!{(zeiπ6)2φ(z)}(1)=limzeiπ6{1(z+eiπ6)(z2eiπ3)2}(1)=limzeiπ6(z2eiπ3)2+(z+eiπ6)×(4z)(z2eiπ3)(z+eiπ6)2(z2eiπ3)4=limzeiπ6(z2eiπ3)+4z(z+eiπ6)(z+eiπ6)2(z2eiπ3)3=eiπ3eiπ3+4eiπ6×2eiπ6(2eiπ6)2(eiπ3eiπ3)3=2isin(π3)+8eiπ32eiπ3(2i)3sin3(π3)=isin(π3)+4eiπ38ieiπ3sin3(π3)=eiπ3×sin(π3)4ieiπ3sin3(π3)=sin(π3)eiπ34i8(32)3=32eiπ34i33....becontinued...

Commented by mathmax by abdo last updated on 01/Mar/20

pareametric method let ϕ(a) =∫_0 ^∞   (dx/(x^4 −x^2  +a))  witha>(1/4)  we have ϕ^′ (a) =−∫_0 ^∞   (dx/((x^4 −x^2  +a)^2 )) ⇒∫_0 ^∞  (dx/((x^4 −x^2  +a)^2 ))=−ϕ^′ (a)  we have 2ϕ(a) =∫_(−∞) ^(+∞)  (dx/(x^4 −x^2  +a)) let W(z)=(1/(z^4 −z^2  +a))  poles of W?  z^4 −z^2  +a =0 ⇒t^2 −t +a =0  (t=z^2 )  Δ=1−4a<0 ⇒Δ=(i(√(4a−1)))^2  ⇒z_1 =((1+i(√(4a−1)))/2)  z_2 =((1−i(√(4a−1)))/2) ⇒W(z) =(1/((z^2 −z_1 )(z^2 −z_2 ))) =(1/((z−(√z_1 ))(z+(√z_1 ))(z−(√z_2 ))(z+(√z_2 ))))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ {Res(W,(√z_1 )) +Res(W,−(√z_2 ))}  Res(W,(√z_1 )) =(1/(2(√z_1 )(z_1 ^2 −z_2 )))  Res(W,−(√z_2 )) =(1/(−2(√z_2 )(z_2 ^2  −z_1 ))) =−(1/(2(√z_2 )(z_2 ^2 −z_1 ))) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =iπ{ (1/((√z_1 )(z_1 ^2 −z_2 )))−(1/((√z_2 )(z_2 ^2 −z_1 )))}  ∣z_1 ∣=(1/2)(√(1+4a−1))=(√a) ⇒z_1 =(√a)e^(iarctan(√(4a−1)))   z_2 =(√a)e^(−iarctan((√(4a−1))))  ⇒(√z_1 )=^4 (√a)e^((i/2)arctan((√(4a−1))))   z_1 ^2 −z_2 =a e^(2iarctan((√(4a−1)))) −(√a)e^(−iarctan((√(4a−1))))  ⇒  ∫_(−∞) ^(+∞)  W(z)dz =iπ{ (1/((^4 (√a))e^(iarctan((√(4a−1)))) (a e^(2iarctan((√(4a−1)))) −(√a)e^(−iarctan((√(4a−1)))) ))−(1/((^4 (√a))e^(−iarctan((√(4a−1)))) (ae^(−2iarctan((√(4a−1)))) −(√a)e^(iarctan((√(4a−1)))) )))}  ...be continued...

pareametricmethodletφ(a)=0dxx4x2+awitha>14wehaveφ(a)=0dx(x4x2+a)20dx(x4x2+a)2=φ(a)wehave2φ(a)=+dxx4x2+aletW(z)=1z4z2+apolesofW?z4z2+a=0t2t+a=0(t=z2)Δ=14a<0Δ=(i4a1)2z1=1+i4a12z2=1i4a12W(z)=1(z2z1)(z2z2)=1(zz1)(z+z1)(zz2)(z+z2)+W(z)dz=2iπ{Res(W,z1)+Res(W,z2)}Res(W,z1)=12z1(z12z2)Res(W,z2)=12z2(z22z1)=12z2(z22z1)+W(z)dz=iπ{1z1(z12z2)1z2(z22z1)}z1∣=121+4a1=az1=aeiarctan4a1z2=aeiarctan(4a1)z1=4aei2arctan(4a1)z12z2=ae2iarctan(4a1)aeiarctan(4a1)+W(z)dz=iπ{1(4a)eiarctan(4a1)(ae2iarctan(4a1)aeiarctan(4a1)1(4a)eiarctan(4a1)(ae2iarctan(4a1)aeiarctan(4a1))}...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com