Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 83254 by mathmax by abdo last updated on 29/Feb/20

let f(x)=arctan(2x−(1/x))  find f^((n)) (x) andf^((n)) (1)

letf(x)=arctan(2x1x)findf(n)(x)andf(n)(1)

Commented by mathmax by abdo last updated on 02/Mar/20

we have f^′ (x)=((2+(1/x^2 ))/(1+(2x−(1/x))^2 )) =((2x^2  +1)/(x^2 {1+(((2x^2 −1)^2 )/x^2 )}))  =((2x^2  +1)/(x^2  +(2x^2 −1)^2 )) =((2x^2  +1)/(x^2  +4x^4 −4x^2  +1)) =((2x^2  +1)/(4x^4 −3x^2 +1))  4x^4 −3x^2  +1=0 →4t^2 −3t +1=0   (t=x^2 )  Δ=9−16 =−7 ⇒t_1 =((3+i(√7))/8)  and t_2 =((3−i(√7))/8) ⇒  f^′ (x)=((2x^2  +1)/(4(x^2 −t_1 )(x^2 −t_2 ))) =(1/(4(t_1 −t_2 )))((1/(x^2 −t_1 ))−(1/(x^2 −t_2 )))(2x^2  +1)  =(1/(i(√7))){ ((2x^2 +1)/(x^2 −t_1 ))−((2x^2  +1)/(x^2 −t_2 ))} =(1/(i(√7))){((2(x^2 −t_1 )+1+2t_1 )/(x^2 −t_1 ))−((2(x^2 −t_2 )+1+2t_2 )/(x^2 −t_2 ))}  =(1/(i(√7))){((2t_1 +1)/(x^2 −t_1 ))−((2t_2 +1)/(x^2 −t_2 ))}  =(1/(i(√7))){((2t_1 +1)/(2(√t_1 )))×((1/(x−(√t_1 )))−(1/(x+(√t_1 )))) −((2t_2 +1)/(2(√t_2 )))((1/(x−(√t_2 )))−(1/(x+(√t_2 ))))}⇒  f^((n)) (x) =((2t_1 +1)/(2i(√7)(√t_1 ))){  (((−1)^(n−1) (n−1)!)/((x−(√t_1 ))^n ))−(((−1)^(n−1) (n−1)!)/((x+(√t_1 ))^n ))}  −((2t_2 +1)/(2i(√7)(√t_2 ))){  (((−1)^(n−1) (n−1)!)/((x−(√t_2 ))^n ))−(((−1)^(n−1) (n−1)!)/((x+(√t_2 ))^n ))}  be continued..

wehavef(x)=2+1x21+(2x1x)2=2x2+1x2{1+(2x21)2x2}=2x2+1x2+(2x21)2=2x2+1x2+4x44x2+1=2x2+14x43x2+14x43x2+1=04t23t+1=0(t=x2)Δ=916=7t1=3+i78andt2=3i78f(x)=2x2+14(x2t1)(x2t2)=14(t1t2)(1x2t11x2t2)(2x2+1)=1i7{2x2+1x2t12x2+1x2t2}=1i7{2(x2t1)+1+2t1x2t12(x2t2)+1+2t2x2t2}=1i7{2t1+1x2t12t2+1x2t2}=1i7{2t1+12t1×(1xt11x+t1)2t2+12t2(1xt21x+t2)}f(n)(x)=2t1+12i7t1{(1)n1(n1)!(xt1)n(1)n1(n1)!(x+t1)n}2t2+12i7t2{(1)n1(n1)!(xt2)n(1)n1(n1)!(x+t2)n}becontinued..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com