All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 83254 by mathmax by abdo last updated on 29/Feb/20
letf(x)=arctan(2x−1x)findf(n)(x)andf(n)(1)
Commented by mathmax by abdo last updated on 02/Mar/20
wehavef′(x)=2+1x21+(2x−1x)2=2x2+1x2{1+(2x2−1)2x2}=2x2+1x2+(2x2−1)2=2x2+1x2+4x4−4x2+1=2x2+14x4−3x2+14x4−3x2+1=0→4t2−3t+1=0(t=x2)Δ=9−16=−7⇒t1=3+i78andt2=3−i78⇒f′(x)=2x2+14(x2−t1)(x2−t2)=14(t1−t2)(1x2−t1−1x2−t2)(2x2+1)=1i7{2x2+1x2−t1−2x2+1x2−t2}=1i7{2(x2−t1)+1+2t1x2−t1−2(x2−t2)+1+2t2x2−t2}=1i7{2t1+1x2−t1−2t2+1x2−t2}=1i7{2t1+12t1×(1x−t1−1x+t1)−2t2+12t2(1x−t2−1x+t2)}⇒f(n)(x)=2t1+12i7t1{(−1)n−1(n−1)!(x−t1)n−(−1)n−1(n−1)!(x+t1)n}−2t2+12i7t2{(−1)n−1(n−1)!(x−t2)n−(−1)n−1(n−1)!(x+t2)n}becontinued..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com