Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 83266 by 09658867628 last updated on 29/Feb/20

∫sin^(10) Θcos ΘdΘ

sin10ΘcosΘdΘ

Commented by Tony Lin last updated on 29/Feb/20

let sinθ=t, dt=cosθdθ  ∫t^(10) dt  =(t^(11) /(11))+c  =(((sinθ)^(11) )/(11))+c

letsinθ=t,dt=cosθdθt10dt=t1111+c=(sinθ)1111+c

Answered by Rio Michael last updated on 29/Feb/20

−−−−−−−−−−  solution  ∫sin^(10) θ cos θ dθ  let sinθ = u ⇒ (du/dθ) = cosθ  ∴ dθ = (du/(cosθ))  ⇒ ∫sin^(10) θcosθ dθ = ∫u^(10)  cosθ (du/(cosθ))                                       = ∫u^(10) du = (u^(11) /(11)) + k  ⇒ ∫sin^(10) θ cosθ dθ = ((sin^(11) θ)/(11)) + k

solutionsin10θcosθdθletsinθ=ududθ=cosθdθ=ducosθsin10θcosθdθ=u10cosθducosθ=u10du=u1111+ksin10θcosθdθ=sin11θ11+k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com