Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 83287 by Power last updated on 29/Feb/20

Answered by mr W last updated on 29/Feb/20

sin x=x−(x^3 /(3!))+(x^5 /(5!))−.....  ((sin x)/x)=1−(x^2 /(3!))+(x^4 /(5!))−.....    sin ((π/2)×((sin x)/x))=sin ((π/2)−(π/2)((x^2 /(3!))−(x^4 /(5!))−.....))  =cos ((π/2)((x^2 /(3!))−(x^4 /(5!))−.....))  =1−(1/(2!))((π/2)((x^2 /(3!))))^2 +o(x^4 )  sin (((3π)/2)×((sin x)/x))=sin (((3π)/2)−((3π)/2)((x^2 /(3!))−(x^4 /(5!))−.....))  =−cos (((3π)/2)((x^2 /(3!))−(x^4 /(5!))−.....))  =−1+(1/(2!))(((3π)/2)((x^2 /(3!))))^2 +o(x^4 )    lim_(x→0) ((sin (((3π)/2)×((sin x)/x))+sin ((π/2)×((sin x)/x)))/(ax^n ))  =lim_(x→0) (((1/(2!))(((3π)/2)((x^2 /(3!))))^2 −(1/(2!))((π/2)((x^2 /(3!))))^2 +o(x^4 ))/(ax^n ))  =lim_(x→0) ((((π^2 x^4 )/(36))+o(x^4 ))/(ax^n ))=^(!) 1  ⇒n=4  ⇒a=(π^2 /(36))

sinx=xx33!+x55!.....sinxx=1x23!+x45!.....sin(π2×sinxx)=sin(π2π2(x23!x45!.....))=cos(π2(x23!x45!.....))=112!(π2(x23!))2+o(x4)sin(3π2×sinxx)=sin(3π23π2(x23!x45!.....))=cos(3π2(x23!x45!.....))=1+12!(3π2(x23!))2+o(x4)limx0sin(3π2×sinxx)+sin(π2×sinxx)axn=limx012!(3π2(x23!))212!(π2(x23!))2+o(x4)axn=limx0π2x436+o(x4)axn=!1n=4a=π236

Commented by Power last updated on 01/Mar/20

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com