Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 83289 by Cmr 237 last updated on 29/Feb/20

  solve  log_((24sinx)) (24cosx)=(3/2)

solvelog(24sinx)(24cosx)=32

Answered by TANMAY PANACEA last updated on 29/Feb/20

((ln24cosx)/(ln24sinx))=(3/2)  ((ln24cosx)/3)=((ln24sinx)/2)=k  24cosx=e^(3k)   24sinx=e^(2k)   24^2 (cos^2 x+sin^2 x)=e^(6k) +e^(4k)   (e^(2k) )^3 +(e^(2k) )^2 =576=8^3 +8^2   e^(2k) =8→2k=ln8  k=((3ln2)/2)=(3/2)ln2  now 24sinx=e^(2k) =8  sinx=(1/3)     x=sin^(−1) ((1/3))      ★recheck...e^(2k) =8   e^k =(√8)   e^(3k) =8(√8)  so  24cosx=8(√8)   cosx=((√8)/3)★

ln24cosxln24sinx=32ln24cosx3=ln24sinx2=k24cosx=e3k24sinx=e2k242(cos2x+sin2x)=e6k+e4k(e2k)3+(e2k)2=576=83+82e2k=82k=ln8k=3ln22=32ln2now24sinx=e2k=8sinx=13x=sin1(13)recheck...e2k=8ek=8e3k=88so24cosx=88cosx=83

Answered by mr W last updated on 29/Feb/20

((ln (24 cos x))/(ln (24 sin x)))=(3/2)  (24 cos x)^2 =(24 sin x)^3   cos^2  x=24 sin^3  x  24 sin^3  x+sin^2  x−1=0  24s^3 +s^2 −1=0  (3s−1)(8s^2 +3s+1)=0  ⇒s=sin x=(1/3) ⇒x=nπ+(−1)^n sin^(−1) (1/3)  ⇒s=sin x=((−3±i(√(23)))/(16)) ⇒non−real

ln(24cosx)ln(24sinx)=32(24cosx)2=(24sinx)3cos2x=24sin3x24sin3x+sin2x1=024s3+s21=0(3s1)(8s2+3s+1)=0s=sinx=13x=nπ+(1)nsin113s=sinx=3±i2316nonreal

Commented by Cmr 237 last updated on 29/Feb/20

thk you sir

thkyousir

Commented by jacoque@gmail.com last updated on 29/Feb/20

good very good

goodverygood

Answered by jacoque@gmail.com last updated on 29/Feb/20

(24sin x)^(3/2) =24cos x  (((sin x)^(3/2) )/(cos x))=((24)/(24^(3/2) ))  (((sin x)^(3/2) )/(cos x))=((√6)/(12))  (((1−cos^2 x)^((1/2)×(3/2)) )/(cos x))=((√6)/(12))  ((((1−cos^2 x)^((1/2)×(3/2)) )^4 )/(cos^4 x))=((((√6))^4 )/(12^4 ))  (((1−cos^2 x)^3 )/(cos^4 x))=(1/(576))  (((1−2cos^2 x+cos^4 x)(1−cos^2 x))/(cos^4 x))=(1/(576))  ((1−cos^2 x−2cos^2 x+2cos^4 x+cos^4 x−cos^6 x)/(cos^4 x))=(1/(576))  (1/(576))  576−1728cos^2 x+1728cos^4 x−576cos^6 x−  −cos^4 x=0  576cos^6 x−1727cos^4 x+1728cos^2 x−576=0  cos x=0.942809041582     x=0.339836  cos x=−0.942809041582    no more real solutions

(24sinx)32=24cosx(sinx)32cosx=242432(sinx)32cosx=612(1cos2x)12×32cosx=612((1cos2x)12×32)4cos4x=(6)4124(1cos2x)3cos4x=1576(12cos2x+cos4x)(1cos2x)cos4x=15761cos2x2cos2x+2cos4x+cos4xcos6xcos4x=157615765761728cos2x+1728cos4x576cos6xcos4x=0576cos6x1727cos4x+1728cos2x576=0cosx=0.942809041582x=0.339836cosx=0.942809041582nomorerealsolutions

Terms of Service

Privacy Policy

Contact: info@tinkutara.com