Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 83327 by john santu last updated on 01/Mar/20

(1−x^2 )(d^2 y/dx^2 ) −2x(dy/dx) + p(p+1)y = 0   in descending power of x. what is  the solution?

(1x2)d2ydx22xdydx+p(p+1)y=0indescendingpowerofx.whatisthesolution?

Commented by Joel578 last updated on 01/Mar/20

It is Legendre′s equation.  Its  solutions  known as Legendre polynomial

ItisLegendresequation.ItssolutionsknownasLegendrepolynomial

Commented by niroj last updated on 01/Mar/20

 (1−x^2 )(d^2 y/dx^2 )−2x(dy/dx)+p(p+1)y=0....(i)   Sol^n :      let, x=0 , f(x)≠0   i.e. x=0 is  ordinary point   i.e. solution of equation is     y= Σ_(r=0) ^∞  a_r  x^r     (dy/dx)= Σ_(r=0) ^∞ a_r rx^(r−1)     (d^2 y/dx^2 ) = Σ_(r=0) ^∞  a_r r(r−1)x^(r−2)       Put, the value of y,y_1 and y_2  in eq^n (i)    (1−x^2 )Σ_(r=0) ^∞ a_r r(r−1)x^(r−2) −2xΣ_(r=0) ^∞ a_r rx^(r−1) +p(p+1)Σ_(r=0) ^∞ a_r x^r  =0  or, Σ_(r=0) ^∞ a_r r(r−1)x^(r−2) −Σ_(r=0) ^∞ a_r r(r−1)x^r −2Σ_(r=0) ^∞ a_r rx^r +p(p+1)Σ_(r=0) ^∞ a_r x^r =0   or, Σ_(r=0) ^∞ a_r r(r−1)x^(r−2) −Σ_(r=0) ^∞ a_r [r(r−1)+2r−p(p+1)]x^r =0   or_,  Σ_(r=0) ^∞ a_r r(r−1)x^(r−2) −Σ_(r=0) ^∞ a_r [r^2 +r−p(p+1)]x^r =0   or_(, ) Σ_(r=0) ^∞ a_r [(r^2 −r)x^(r−2) −(r^2 +r−p^2 −p)]x^r =0   or,a_r r(r−1)x^(r−2) −a_r [r(r+1)−p(p+1)]x^r =0  put r=r+2    a_(r+2)  (r+2)(r+1)x^r −a_r [(r+2)(r+3)−p(p+1)]x^r =0   or, [a_(r+2) (r+2)(r+1)−a_r {(r+2)(r+3)−p(p+1)}]x^r =0   or,  a_(r+2) (r+2)(r+1)−a_r {(r+2)(r+3)−p(p+1)}=0       a_(r+2)  = (((r+2)(r+3)−p(p+1))/((r+2)(r+1)))a_r    put r=0,    a_2 = ((2.3−p(p+1))/(2.1))a_0     then put  descending value of r in   terms of power series      y= Σ_(r=0) ^∞ a_r x^r  = a_0 +ax+a_2 x^2 +....

(1x2)d2ydx22xdydx+p(p+1)y=0....(i)Soln:let,x=0,f(x)0i.e.x=0isordinarypointi.e.solutionofequationisy=r=0arxrdydx=r=0arrxr1d2ydx2=r=0arr(r1)xr2Put,thevalueofy,y1andy2ineqn(i)(1x2)r=0arr(r1)xr22xr=0arrxr1+p(p+1)r=0arxr=0or,r=0arr(r1)xr2r=0arr(r1)xr2r=0arrxr+p(p+1)r=0arxr=0or,r=0arr(r1)xr2r=0ar[r(r1)+2rp(p+1)]xr=0or,r=0arr(r1)xr2r=0ar[r2+rp(p+1)]xr=0or,r=0ar[(r2r)xr2(r2+rp2p)]xr=0or,arr(r1)xr2ar[r(r+1)p(p+1)]xr=0putr=r+2ar+2(r+2)(r+1)xrar[(r+2)(r+3)p(p+1)]xr=0or,[ar+2(r+2)(r+1)ar{(r+2)(r+3)p(p+1)}]xr=0or,ar+2(r+2)(r+1)ar{(r+2)(r+3)p(p+1)}=0ar+2=(r+2)(r+3)p(p+1)(r+2)(r+1)arputr=0,a2=2.3p(p+1)2.1a0thenputdescendingvalueofrintermsofpowerseriesy=r=0arxr=a0+ax+a2x2+....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com