All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 83383 by mhmd last updated on 01/Mar/20
find∫02∫04−x2∫02−zzdxdydzpleashelpmesir
Answered by mr W last updated on 01/Mar/20
∫02∫04−x2∫02−zzdxdydz=∫02∫04−x2(∫02−zzdy)dzdx=∫02(∫04−x2z(2−z)dz)dx=∫02[z2−z33]04−x2dx=∫02[4−x2−(4−x2)323]dx=4×2−233−13∫02(4−x2)32dx=163−13∫02(4−x2)32dx=163−13×3π(seebelow)=163−πletx=2sinθ∫02(4−x2)32dx=∫0π2(4cos2θ)322cosθdθ=16∫0π2cos4θdθ=4∫0π2(2cos2θ)2dθ=4∫0π2(1+cos2θ)2dθ=4∫0π2(1+2cos2θ+cos22θ)dθ=4∫0π2(1+2cos2θ+1+cos4θ2)dθ=4∫0π2(32+2cos2θ+cos4θ2)dθ=4[32θ+sin2θ+sin4θ8]0π2=4×32×π2=3π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com