Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83383 by mhmd last updated on 01/Mar/20

find ∫_0 ^2 ∫_0 ^(√(4−x^2 )) ∫_0 ^(2−z) zdxdydz  pleas help me sir

find0204x202zzdxdydzpleashelpmesir

Answered by mr W last updated on 01/Mar/20

∫_0 ^2 ∫_0 ^(√(4−x^2 )) ∫_0 ^(2−z) zdxdydz  =∫_0 ^2 ∫_0 ^(√(4−x^2 )) (∫_0 ^(2−z) zdy)dzdx  =∫_0 ^2 (∫_0 ^(√(4−x^2 )) z(2−z)dz)dx  =∫_0 ^2 [z^2 −(z^3 /3)]_0 ^(√(4−x^2 )) dx  =∫_0 ^2 [4−x^2 −(((4−x^2 )^(3/2) )/3)]dx  =4×2−(2^3 /3)−(1/3)∫_0 ^2 (4−x^2 )^(3/2) dx  =((16)/3)−(1/3)∫_0 ^2 (4−x^2 )^(3/2) dx  =((16)/3)−(1/3)×3π   (see below)  =((16)/3)−π    let x=2 sin θ  ∫_0 ^2 (4−x^2 )^(3/2) dx  =∫_0 ^(π/2) (4 cos^2  θ)^(3/2)  2 cos θ dθ  =16∫_0 ^(π/2) cos^4  θ dθ  =4∫_0 ^(π/2) (2 cos^2  θ)^2  dθ  =4∫_0 ^(π/2) (1+cos 2θ)^2  dθ  =4∫_0 ^(π/2) (1+2 cos 2θ+cos^2  2θ) dθ  =4∫_0 ^(π/2) (1+2 cos 2θ+((1+cos 4θ)/2)) dθ  =4∫_0 ^(π/2) ((3/2)+2 cos 2θ+((cos 4θ)/2)) dθ  =4[(3/2)θ+sin 2θ+((sin 4θ)/8)]_0 ^(π/2)   =4×(3/2)×(π/2)  =3π

0204x202zzdxdydz=0204x2(02zzdy)dzdx=02(04x2z(2z)dz)dx=02[z2z33]04x2dx=02[4x2(4x2)323]dx=4×22331302(4x2)32dx=1631302(4x2)32dx=16313×3π(seebelow)=163πletx=2sinθ02(4x2)32dx=0π2(4cos2θ)322cosθdθ=160π2cos4θdθ=40π2(2cos2θ)2dθ=40π2(1+cos2θ)2dθ=40π2(1+2cos2θ+cos22θ)dθ=40π2(1+2cos2θ+1+cos4θ2)dθ=40π2(32+2cos2θ+cos4θ2)dθ=4[32θ+sin2θ+sin4θ8]0π2=4×32×π2=3π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com