Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83385 by M±th+et£s last updated on 01/Mar/20

∫((1+ae^(−(a+1)x) +(a+1)e^(−ax) )/x^2 ) dx,  a∈z^+

1+ae(a+1)x+(a+1)eaxx2dx,az+

Commented by M±th+et£s last updated on 01/Mar/20

typo   ∫_0 ^∞

typo0

Answered by mind is power last updated on 01/Mar/20

∫_0 ^(+∞) ((1+ae^(−(a+1)x) −(a+1)e^(−ax) )/x^2 )dx?

0+1+ae(a+1)x(a+1)eaxx2dx?

Commented by M±th+et£s last updated on 01/Mar/20

yes sir

yessir

Commented by mathmax by abdo last updated on 02/Mar/20

by parts u^′ =(1/x^2 ) and v=1+ae^(−(a+1)x) −(a+1)e^(−ax)  ⇒  I=[−(1/x)(1+ae^(−(a+1)x) −(a+1)e^(−ax) )]_0 ^(+∞) +  ∫_0 ^∞  (e^(−(a+1)x)  −a(a+1)e^(−(a+1)x) −e^(−ax) +a(a+1)e^(−ax) )(dx/x)  =∫_0 ^∞   ((e^(−(a+1)x) −e^(−ax) )/x)dx −a(a+1)∫_0 ^∞ ((e^(−(a+1)x) −e^(−ax) )/x)dx  =(1−a^2 −a)∫_0 ^∞   ((e^(−(a+1)x) −e^(−ax) )/x)dx let ξ(a)=∫_0 ^∞ ((e^(−(a+1)x) −e^(−ax) )/x)dx  ⇒ξ^′ (a) =∫_0 ^∞ ((−x e^(−(a+1)x) +xe^(−ax) )/x)dx  =∫_0 ^∞  e^(−ax) dx−∫_0 ^∞  e^(−(a+1)x)  dx =[−(e^(−ax) /a)]_0 ^∞ −[−(e^(−(a+1)x) /(a+1))]_0 ^(+∞)   =(1/a)−(1/(a+1)) ⇒ξ(a) =ln((a/(a+1)))+c     (we supoose a>0 )  lim_(a→+∞) ξ(a)=0=c ⇒ξ(a)=ln((a/(a+1))) ⇒I =(1−a^2 −a)ln((a/(a+1)))  rest to prove that lim_(x→0)      ((1+ae^(−(a+1)x) −(a+1)e^(−ax) )/x) =0  e^(−(a+1)x) ∼1−(a+1)x+(((a+1)x^2 )/2)⇒a e^(−(a+1)x) ∼a−a(a+1)x+((a(a+1)x^2 )/2)  e^(−ax)  ∼1−ax+((a^2 x^2 )/2) ⇒(a+1)e^(−ax)  ∼a+1−a(a+1)x +((a^2 (a+1)x^2 )/2) ⇒  (...−(....)∼1+a−a(a+1)x+((a(a+1)x^2 )/2)−a−1−a(a+1)x−((a^2 (a+1)x^2 )/2)  =((a+1)/2)(a−a^2 )x^2  ⇒(((...)−(...))/x)∼ (((a+1)(a−a^2 )x)/2)→0 (x→0)

bypartsu=1x2andv=1+ae(a+1)x(a+1)eaxI=[1x(1+ae(a+1)x(a+1)eax)]0++0(e(a+1)xa(a+1)e(a+1)xeax+a(a+1)eax)dxx=0e(a+1)xeaxxdxa(a+1)0e(a+1)xeaxxdx=(1a2a)0e(a+1)xeaxxdxletξ(a)=0e(a+1)xeaxxdxξ(a)=0xe(a+1)x+xeaxxdx=0eaxdx0e(a+1)xdx=[eaxa]0[e(a+1)xa+1]0+=1a1a+1ξ(a)=ln(aa+1)+c(wesupoosea>0)lima+ξ(a)=0=cξ(a)=ln(aa+1)I=(1a2a)ln(aa+1)resttoprovethatlimx01+ae(a+1)x(a+1)eaxx=0e(a+1)x1(a+1)x+(a+1)x22ae(a+1)xaa(a+1)x+a(a+1)x22eax1ax+a2x22(a+1)eaxa+1a(a+1)x+a2(a+1)x22(...(....)1+aa(a+1)x+a(a+1)x22a1a(a+1)xa2(a+1)x22=a+12(aa2)x2(...)(...)x(a+1)(aa2)x20(x0)

Answered by mind is power last updated on 02/Mar/20

f(t)=∫_0 ^(+∞) ((1+ae^(−(a+1)tx) −(a+1)e^(−atx) )/x^2 )  f′(t)=∫_0 ^(+∞) ((a(a+1)(−e^(−(a+1)tx) +e^(−atx) ))/x)dx  ∫_0 ^(+∞) ((e^(−atx) −e^(−(a+1)tx) )/x)dx=ln(((a+1)/a))  f′(t)=a(a+1)ln(((a+1)/a))  f(t)=a(a+1)ln(((a+1)/a))t+c  f(0)=0⇒c=0  f(t)=a(a+1)ln(((1+a)/a))t  ∫((1+ae^(−(a+1)x)  −(a+1)e^(−ax) )/x^2 )dx=f(1)  =a(a+1)ln(((1+a)/a))

f(t)=0+1+ae(a+1)tx(a+1)eatxx2f(t)=0+a(a+1)(e(a+1)tx+eatx)xdx0+eatxe(a+1)txxdx=ln(a+1a)f(t)=a(a+1)ln(a+1a)f(t)=a(a+1)ln(a+1a)t+cf(0)=0c=0f(t)=a(a+1)ln(1+aa)t1+ae(a+1)x(a+1)eaxx2dx=f(1)=a(a+1)ln(1+aa)

Commented by mind is power last updated on 02/Mar/20

yeah sorry verry busy these day worck +studies  f(t)=∫_0 ^(+∞) ((1+ae^(−t(a+1)x) −(1+a)e^(−tax)  )/x^2 )dx  f(0)=0⇒c=0 yes

yeahsorryverrybusythesedayworck+studiesf(t)=0+1+aet(a+1)x(1+a)etaxx2dxf(0)=0c=0yes

Commented by M±th+et£s last updated on 02/Mar/20

god bless you sir and thank for the solution

godblessyousirandthankforthesolution

Commented by M±th+et£s last updated on 02/Mar/20

thank you sir but i think there is some   typos

thankyousirbutithinkthereissometypos

Commented by M±th+et£s last updated on 02/Mar/20

Commented by M±th+et£s last updated on 02/Mar/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com