Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 83406 by jagoll last updated on 02/Mar/20

If u_1 +u_2 +u_3 +...+u_n  = 2n^2 +n   is a  AP. find the value of   u_1 +u_2 +u_3 +...+u_(2n−2) +u_(2n−1)  .

$$\mathrm{If}\:\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +...+\mathrm{u}_{\mathrm{n}} \:=\:\mathrm{2n}^{\mathrm{2}} +\mathrm{n}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\:\mathrm{AP}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +...+\mathrm{u}_{\mathrm{2n}−\mathrm{2}} +\mathrm{u}_{\mathrm{2n}−\mathrm{1}} \:. \\ $$

Commented by jagoll last updated on 03/Mar/20

my way   from s_n  = 2n^2 +n  { ((u_1 =3)),((u_n  = 4n−1)) :}  u_1 +u_2 +u_3 +...+u_(2n−2) +u_(2n−1)  = M  let 2n−1 = k   M = (k/2)(3+u_k )=(k/2)(3+4k−1)  M = (k/2)(4k+2) = k (2k+1)  M = (2n−1)(4k−1) = 8n^2 −6n+1

$$\mathrm{my}\:\mathrm{way}\: \\ $$$$\mathrm{from}\:\mathrm{s}_{\mathrm{n}} \:=\:\mathrm{2n}^{\mathrm{2}} +\mathrm{n}\:\begin{cases}{\mathrm{u}_{\mathrm{1}} =\mathrm{3}}\\{\mathrm{u}_{\mathrm{n}} \:=\:\mathrm{4n}−\mathrm{1}}\end{cases} \\ $$$$\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +...+\mathrm{u}_{\mathrm{2n}−\mathrm{2}} +\mathrm{u}_{\mathrm{2n}−\mathrm{1}} \:=\:\mathrm{M} \\ $$$$\mathrm{let}\:\mathrm{2n}−\mathrm{1}\:=\:\mathrm{k}\: \\ $$$$\mathrm{M}\:=\:\frac{\mathrm{k}}{\mathrm{2}}\left(\mathrm{3}+\mathrm{u}_{\mathrm{k}} \right)=\frac{\mathrm{k}}{\mathrm{2}}\left(\mathrm{3}+\mathrm{4k}−\mathrm{1}\right) \\ $$$$\mathrm{M}\:=\:\frac{\mathrm{k}}{\mathrm{2}}\left(\mathrm{4k}+\mathrm{2}\right)\:=\:\mathrm{k}\:\left(\mathrm{2k}+\mathrm{1}\right) \\ $$$$\mathrm{M}\:=\:\left(\mathrm{2n}−\mathrm{1}\right)\left(\mathrm{4k}−\mathrm{1}\right)\:=\:\mathrm{8n}^{\mathrm{2}} −\mathrm{6n}+\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 02/Mar/20

we have u_1 +u_2 +....+u_n =2n^2  +n  u_1 +u_2 +....+u_n +u_(n+1) =2(n+1)^2  +n+1 ⇒  u_(n+1) =2(n+1)^2  +n+1−2n^2 −n =2(n^2  +2n+1)−2n^2 +1  =2n^2 +4n+2−2n^2  +1 =4n+3 ⇒u_n =4(n−1)+3 =4n−1 ⇒  u_1 +u_2 +....+u_(2n−1) =((2n−1−1+1)/2)(u_1 +u_(2n−1) )  =((2n−1)/2){3 +4(2n−1)−1} =((2n−1)/2)(2+8n−4)  =(2n−1)(4n−1)=8n^2 −2n−4n+1 =8n^2 −6n +1

$${we}\:{have}\:{u}_{\mathrm{1}} +{u}_{\mathrm{2}} +....+{u}_{{n}} =\mathrm{2}{n}^{\mathrm{2}} \:+{n} \\ $$$${u}_{\mathrm{1}} +{u}_{\mathrm{2}} +....+{u}_{{n}} +{u}_{{n}+\mathrm{1}} =\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:+{n}+\mathrm{1}\:\Rightarrow \\ $$$${u}_{{n}+\mathrm{1}} =\mathrm{2}\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:+{n}+\mathrm{1}−\mathrm{2}{n}^{\mathrm{2}} −{n}\:=\mathrm{2}\left({n}^{\mathrm{2}} \:+\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{2}{n}^{\mathrm{2}} +\mathrm{1} \\ $$$$=\mathrm{2}{n}^{\mathrm{2}} +\mathrm{4}{n}+\mathrm{2}−\mathrm{2}{n}^{\mathrm{2}} \:+\mathrm{1}\:=\mathrm{4}{n}+\mathrm{3}\:\Rightarrow{u}_{{n}} =\mathrm{4}\left({n}−\mathrm{1}\right)+\mathrm{3}\:=\mathrm{4}{n}−\mathrm{1}\:\Rightarrow \\ $$$${u}_{\mathrm{1}} +{u}_{\mathrm{2}} +....+{u}_{\mathrm{2}{n}−\mathrm{1}} =\frac{\mathrm{2}{n}−\mathrm{1}−\mathrm{1}+\mathrm{1}}{\mathrm{2}}\left({u}_{\mathrm{1}} +{u}_{\mathrm{2}{n}−\mathrm{1}} \right) \\ $$$$=\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left\{\mathrm{3}\:+\mathrm{4}\left(\mathrm{2}{n}−\mathrm{1}\right)−\mathrm{1}\right\}\:=\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}+\mathrm{8}{n}−\mathrm{4}\right) \\ $$$$=\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{4}{n}−\mathrm{1}\right)=\mathrm{8}{n}^{\mathrm{2}} −\mathrm{2}{n}−\mathrm{4}{n}+\mathrm{1}\:=\mathrm{8}{n}^{\mathrm{2}} −\mathrm{6}{n}\:+\mathrm{1} \\ $$

Commented by mathmax by abdo last updated on 02/Mar/20

u_n =4n−1

$${u}_{{n}} =\mathrm{4}{n}−\mathrm{1} \\ $$

Answered by mind is power last updated on 02/Mar/20

ΣU_k =(((u_1 +u_n )n)/2)  u_n =U_1 +(n−1)r  ⇒(((2u_1 +(n−1)r)n)/2)=2n^2 +n  ⇒2u_1 +(n−1)r=4n+2  2u_1 −r+nr=4n+2  ⇒r=4,u_1 =3  Σ_(k=1) ^(2n−1) u_k =((2n−1)/2)(u_1 +u_(2n−1) )  =((2n−1)/2)(u_1 +u_1 +(2n−2)r)  =((2n−1)/2)(6+(2n−2)4)=  =(2n−1)(−1+4n)=8n^2 −6n+1

$$\Sigma{U}_{{k}} =\frac{\left({u}_{\mathrm{1}} +{u}_{{n}} \right){n}}{\mathrm{2}} \\ $$$${u}_{{n}} ={U}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){r} \\ $$$$\Rightarrow\frac{\left(\mathrm{2}{u}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){r}\right){n}}{\mathrm{2}}=\mathrm{2}{n}^{\mathrm{2}} +{n} \\ $$$$\Rightarrow\mathrm{2}{u}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){r}=\mathrm{4}{n}+\mathrm{2} \\ $$$$\mathrm{2}{u}_{\mathrm{1}} −{r}+{nr}=\mathrm{4}{n}+\mathrm{2} \\ $$$$\Rightarrow{r}=\mathrm{4},{u}_{\mathrm{1}} =\mathrm{3} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}{u}_{{k}} =\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left({u}_{\mathrm{1}} +{u}_{\mathrm{2}{n}−\mathrm{1}} \right) \\ $$$$=\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left({u}_{\mathrm{1}} +{u}_{\mathrm{1}} +\left(\mathrm{2}{n}−\mathrm{2}\right){r}\right) \\ $$$$=\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left(\mathrm{6}+\left(\mathrm{2}{n}−\mathrm{2}\right)\mathrm{4}\right)= \\ $$$$=\left(\mathrm{2}{n}−\mathrm{1}\right)\left(−\mathrm{1}+\mathrm{4}{n}\right)=\mathrm{8}{n}^{\mathrm{2}} −\mathrm{6}{n}+\mathrm{1} \\ $$$$ \\ $$

Commented by mind is power last updated on 02/Mar/20

2n−1=11 sir

$$\mathrm{2}{n}−\mathrm{1}=\mathrm{11}\:{sir} \\ $$

Commented by jagoll last updated on 02/Mar/20

if n = 6⇒ 8(36)−36+1= 7×36+1=253  u_1 +u_2 +u_3 +...+u_(10 ) = 5(3+39) = 5×42 =210  not same sir

$$\mathrm{if}\:\mathrm{n}\:=\:\mathrm{6}\Rightarrow\:\mathrm{8}\left(\mathrm{36}\right)−\mathrm{36}+\mathrm{1}=\:\mathrm{7}×\mathrm{36}+\mathrm{1}=\mathrm{253} \\ $$$$\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +...+\mathrm{u}_{\mathrm{10}\:} =\:\mathrm{5}\left(\mathrm{3}+\mathrm{39}\right)\:=\:\mathrm{5}×\mathrm{42}\:=\mathrm{210} \\ $$$$\mathrm{not}\:\mathrm{same}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 02/Mar/20

S_n =2n^2 +n=n(2n+1)  S_(2n−1) =(2n−1)(2(2n−1)+1)=(2n−1)(4n−1)

$${S}_{{n}} =\mathrm{2}{n}^{\mathrm{2}} +{n}={n}\left(\mathrm{2}{n}+\mathrm{1}\right) \\ $$$${S}_{\mathrm{2}{n}−\mathrm{1}} =\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}\left(\mathrm{2}{n}−\mathrm{1}\right)+\mathrm{1}\right)=\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{4}{n}−\mathrm{1}\right) \\ $$

Commented by mr W last updated on 02/Mar/20

if we want to know u_n , then  u_n =S_n −S_(n−1) =2n^2 +n−2(n−1)^2 −(n−1)  =4n−1

$${if}\:{we}\:{want}\:{to}\:{know}\:{u}_{{n}} ,\:{then} \\ $$$${u}_{{n}} ={S}_{{n}} −{S}_{{n}−\mathrm{1}} =\mathrm{2}{n}^{\mathrm{2}} +{n}−\mathrm{2}\left({n}−\mathrm{1}\right)^{\mathrm{2}} −\left({n}−\mathrm{1}\right) \\ $$$$=\mathrm{4}{n}−\mathrm{1} \\ $$

Answered by TANMAY PANACEA last updated on 02/Mar/20

put n=1  u_1 =3  put n=2    u_1 +u_2 =10  so u_2 =7  n=3  u_1 +u_2 +u_3 =21   so u_3 =11  so first term ofA.P=3  common difference=4  S_(2n−1) =((2n−1)/2)[2×3+(2n−1−1)×4]  =((2n−1)/2)×[6+8n−8]  =(2n−1)(4n−1)

$${put}\:{n}=\mathrm{1}\:\:{u}_{\mathrm{1}} =\mathrm{3} \\ $$$${put}\:{n}=\mathrm{2}\:\:\:\:{u}_{\mathrm{1}} +{u}_{\mathrm{2}} =\mathrm{10}\:\:\boldsymbol{{so}}\:\boldsymbol{{u}}_{\mathrm{2}} =\mathrm{7} \\ $$$$\boldsymbol{{n}}=\mathrm{3}\:\:{u}_{\mathrm{1}} +{u}_{\mathrm{2}} +{u}_{\mathrm{3}} =\mathrm{21}\:\:\:{so}\:{u}_{\mathrm{3}} =\mathrm{11} \\ $$$${so}\:{first}\:{term}\:{of}\boldsymbol{{A}}.{P}=\mathrm{3} \\ $$$${common}\:{difference}=\mathrm{4} \\ $$$${S}_{\mathrm{2}{n}−\mathrm{1}} =\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left[\mathrm{2}×\mathrm{3}+\left(\mathrm{2}{n}−\mathrm{1}−\mathrm{1}\right)×\mathrm{4}\right] \\ $$$$=\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}×\left[\mathrm{6}+\mathrm{8}{n}−\mathrm{8}\right] \\ $$$$=\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{4}{n}−\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com