Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 83542 by Power last updated on 03/Mar/20

Answered by john santu last updated on 03/Mar/20

f(x) = (1/(1+2^(2x−1) ))  f((1/(2001))) = (1/(1+2^((2/(2001))−1) ))  f((2/(2001))) = (1/(1+2^((2/(2001))−1) ))  f((3/(2001))) = (1/(1+2^((3/(2001))−1) ))  f((1/(2001)))+f((2/(2001)))+f((3/(2001)))+...+  f(((2000)/(2001)))= (1/(1+2^((1/(2001))−1) ))+(1/(1+2^((2/(2001))−1) ))+  (1/(1+2^((3/(2001))−1) ))+...+(1/(1+2^(((2000)/(2001))−1) ))=

f(x)=11+22x1f(12001)=11+2220011f(22001)=11+2220011f(32001)=11+2320011f(12001)+f(22001)+f(32001)+...+f(20002001)=11+2120011+11+2220011+11+2320011+...+11+2200020011=

Commented by john santu last updated on 03/Mar/20

= (1/(1+2^(−((2000)/(2001))) ))+(1/(1+2^(−((1999)/(2001))) ))+(1/(1+2^(−((1998)/(2001))) ))+  ...+(1/(1+2^(−(1/(2001))) ))

=11+220002001+11+219992001+11+219982001+...+11+212001

Answered by mahdi last updated on 03/Mar/20

if   m+n=1⇒  f(m)+f(n)=(2/(4^m +2))+(2/(4^n +2))=((2(4^n +2)+2(4^m +2))/((4^m +2)(4^n +2)))=  ((8+2(4^m +4^n ))/(4+4^m ×4^n +2(4^m +4^n )))=1    (4^m ×4^n =4^(m+n) =4^1 )  ⇒[f((1/(2001)))+f(((2000)/(2001)))]+[f((2/(2001)))+f(((1999)/(2001)))]+  ...+[f(((1000)/(2001)))+f(((1001)/(2001)))]=1000×1=1000

ifm+n=1f(m)+f(n)=24m+2+24n+2=2(4n+2)+2(4m+2)(4m+2)(4n+2)=8+2(4m+4n)4+4m×4n+2(4m+4n)=1(4m×4n=4m+n=41)[f(12001)+f(20002001)]+[f(22001)+f(19992001)]+...+[f(10002001)+f(10012001)]=1000×1=1000

Commented by Power last updated on 03/Mar/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com