All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 83629 by M±th+et£s last updated on 04/Mar/20
showthat∑∞n,k=0n!k!(n+k+2)!=π26
Answered by Kamel Kamel last updated on 04/Mar/20
S(x)=∑+∞n=0∑+∞k=0n!k!(n+k+2)!xn+k+2=∑+∞n=0∑+∞k=0Γ(n+1)Γ(k+1)Γ(n+k+2)(n+k+2)xn+k+2S′(x)=∑+∞n=0∑+∞k=0xn+k+1∫01tn(1−t)kdt=x∫0111−xt11−x(1−t)dt1(1−xt)(1−x+xt)=12−x(11−xt+11−x+xt)∴S′(x)=12−x∫01(11−xt+11−x+xt)xdt=−22−xLn(1−x)=−22−xLn(1−x)∴S=−2∫01Ln(1−x)2−xdx=t=2−x−2∫12Ln(t−1)tdt=z=1t−2∫121Ln(1−z)−Ln(z)zdz=2(Li2(1)−Li2(12))−Ln2(2)Li2(1−x)+Li2(x)=π26−Ln(x)Ln(1−x)∴Li2(12)=π212−12Ln2(2)So:S=2(π26−π212+12Ln2(2))−Ln2(2)=π26
Commented by M±th+et£s last updated on 04/Mar/20
nicesolutionsirthankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com