Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 83629 by M±th+et£s last updated on 04/Mar/20

show that  Σ_(n,k=0) ^∞ ((n! k!)/((n+k+2)!))=(π^2 /6)

showthatn,k=0n!k!(n+k+2)!=π26

Answered by Kamel Kamel last updated on 04/Mar/20

S(x)=Σ_(n=0) ^(+∞) Σ_(k=0) ^(+∞) ((n!k!)/((n+k+2)!))x^(n+k+2) =Σ_(n=0) ^(+∞) Σ_(k=0) ^(+∞) ((Γ(n+1)Γ(k+1))/(Γ(n+k+2)(n+k+2)))x^(n+k+2)   S′(x)=Σ_(n=0) ^(+∞) Σ_(k=0) ^(+∞) x^(n+k+1) ∫_0 ^1 t^n (1−t)^k dt             =x∫_0 ^1 (1/(1−xt)) (1/(1−x(1−t)))dt              (1/((1−xt)(1−x+xt)))=(1/(2−x))((1/(1−xt))+(1/(1−x+xt)))  ∴ S′(x)=(1/(2−x))∫_0 ^1 ((1/(1−xt))+(1/(1−x+xt)))xdt=−(2/(2−x))Ln(1−x)                 =−(2/(2−x))Ln(1−x)  ∴ S=−2∫_0 ^1 ((Ln(1−x))/(2−x))dx=^(t=2−x) −  2∫_1 ^2 ((Ln(t−1))/t)dt          =^(z=(1/t))   −2∫_(1/2) ^1 ((Ln(1−z)−Ln(z))/z)dz            =2(Li_2 (1)−Li_2 ((1/2)))−Ln^2 (2)  Li_2 (1−x)+Li_2 (x)=(π^2 /6)−Ln(x)Ln(1−x)  ∴Li_2 ((1/2))=(π^2 /(12))−(1/2)Ln^2 (2)  So:  S=2((π^2 /6)−(π^2 /(12))+(1/2)Ln^2 (2))−Ln^2 (2)=(π^2 /6)

S(x)=+n=0+k=0n!k!(n+k+2)!xn+k+2=+n=0+k=0Γ(n+1)Γ(k+1)Γ(n+k+2)(n+k+2)xn+k+2S(x)=+n=0+k=0xn+k+101tn(1t)kdt=x0111xt11x(1t)dt1(1xt)(1x+xt)=12x(11xt+11x+xt)S(x)=12x01(11xt+11x+xt)xdt=22xLn(1x)=22xLn(1x)S=201Ln(1x)2xdx=t=2x212Ln(t1)tdt=z=1t2121Ln(1z)Ln(z)zdz=2(Li2(1)Li2(12))Ln2(2)Li2(1x)+Li2(x)=π26Ln(x)Ln(1x)Li2(12)=π21212Ln2(2)So:S=2(π26π212+12Ln2(2))Ln2(2)=π26

Commented by M±th+et£s last updated on 04/Mar/20

nice solution sir thank you

nicesolutionsirthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com