All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 83668 by jagoll last updated on 05/Mar/20
limx→0sinxcosx−xx2sin(2x)=
Answered by john santu last updated on 05/Mar/20
limx→012sin(2x)−xx2sin(2x)=limx→012(2x−8x36+o(2x3))−xx2(2x)=limx→0x−23x3+12o(x3)−x2x3=limx→0−23x32x3=−13
Commented by jagoll last updated on 05/Mar/20
thankyoumister
DalilL′Hopitallimx→0cos2x−12xsin(2x)+2x2cos(2x)=limx→0−2sin2(x)2xsin(2x)+2x2cos(2x)=limx→0−2sin2x2x(sin(2x)+xcos(2x))=−22(2+1)=−13
Terms of Service
Privacy Policy
Contact: info@tinkutara.com