Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 83690 by jagoll last updated on 05/Mar/20

lim_(x→∞ )  ((tan (((πx+1)/(2x+2))))/(x+1)) = ?

limxtan(πx+12x+2)x+1=?

Commented by mathmax by abdo last updated on 05/Mar/20

let f(x)=((tan(((πx+1)/(2x+2))))/(x+1)) ⇒f(x)=((tan((π/2)×((x+(1/π))/(x+1))))/(x+1))  =((tan((π/2)×(((x+1 +(1/π)−1)/(x+1)))))/(x+1)) =((tan((π/2)(1+((1−π)/(π(x+1)))))/(x+1))  =((tan((π/2)+(((1−π))/(2(x+1)))))/(x+1)) =−(1/(tan(((1−π)/(2(x+1))))(x+1)))  ⇒f(x)∼−(1/(((1−π)/(2(x+1)))×(x+1))) =((−2)/(1−π)) =(2/(π−1)) ⇒  lim_(x→+∞) f(x) =(2/(π−1))

letf(x)=tan(πx+12x+2)x+1f(x)=tan(π2×x+1πx+1)x+1=tan(π2×(x+1+1π1x+1))x+1=tan(π2(1+1ππ(x+1))x+1=tan(π2+(1π)2(x+1))x+1=1tan(1π2(x+1))(x+1)f(x)11π2(x+1)×(x+1)=21π=2π1limx+f(x)=2π1

Answered by john santu last updated on 05/Mar/20

lim_(x→∞)  (1/(x+1)) cot ((π/2)−((πx+1)/(2x+2))) =  lim_(x→∞ )  ((cot (((2(π−1))/(4(x+1)))))/(x+1)) =   lim_(x→∞)  (1/((x+1)tan (((π−1)/(2(x+1)))))) × (((((π−1)/(2(x+1)))))/((((π−1)/(2(x+1)))))) =  lim_(x→∞)  ((2(x+1))/((π−1)(x+1))) = (2/(π−1)) ⇐ the answer

limx1x+1cot(π2πx+12x+2)=limxcot(2(π1)4(x+1))x+1=limx1(x+1)tan(π12(x+1))×(π12(x+1))(π12(x+1))=limx2(x+1)(π1)(x+1)=2π1theanswer

Commented by jagoll last updated on 05/Mar/20

thank you mister

thankyoumister

Terms of Service

Privacy Policy

Contact: info@tinkutara.com