Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83691 by niroj last updated on 05/Mar/20

 evaluate:     ∫ (( dx)/(a sin x+b cos x))

evaluate:dxasinx+bcosx

Commented by mathmax by abdo last updated on 05/Mar/20

we use changement tan((x/2))=t ⇒  I =∫    (1/(a((2t)/(1+t^2 )) +b((1−t^2 )/(1+t^2 ))))×((2dt)/(1+t^2 )) =2∫    (dt/(2at+b−bt^2 ))  =−2∫   (dt/(bt^2 −2at −b))  Δ^′ =a^2 +b^2 >0 ⇒t_1 =((a+(√(a^2 +b^2 )))/b)  and t_2 =((a−(√(a^2  +b^2 )))/b) ⇒  I =−2 ∫   (dt/(b(t−t_1 )(t−t_2 ))) =((−2)/(b(t_1 −t_2 )))∫  ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =((−2)/(b×((2(√(a^2  +b^2 )))/b))) ln∣((t−t_1 )/(t−t_2 ))∣ +C=((−1)/(√(a^2  +b^2 )))ln∣((tan((x/2))−((a+(√(a^2  +b^2 )))/b))/(tan((x/2))−((a−(√(a^2 +b^2 )))/b)))∣ +C  =((−1)/(√(a^2  +b^2 )))ln∣((btan((x/2))−a−(√(a^2  +b^2 )))/(btan((x/2))−a+(√(a^2  +b^2 ))))∣ +C

weusechangementtan(x2)=tI=1a2t1+t2+b1t21+t2×2dt1+t2=2dt2at+bbt2=2dtbt22atbΔ=a2+b2>0t1=a+a2+b2bandt2=aa2+b2bI=2dtb(tt1)(tt2)=2b(t1t2)(1tt11tt2)dt=2b×2a2+b2blntt1tt2+C=1a2+b2lntan(x2)a+a2+b2btan(x2)aa2+b2b+C=1a2+b2lnbtan(x2)aa2+b2btan(x2)a+a2+b2+C

Commented by john santu last updated on 06/Mar/20

if you want to short cut   ∫ (dx/(asin x+bcos x)) = (1/(√(a^2 +b^2 ))) ln ∣((a+b+(√(a^2 +b^2 )))/(a+b−(√(a^2 +b^2 ))))∣ + c

ifyouwanttoshortcutdxasinx+bcosx=1a2+b2lna+b+a2+b2a+ba2+b2+c

Answered by john santu last updated on 05/Mar/20

asin x + b cos x = (√(a^2 +b^2 )) cos (x−θ)   where θ = tan^(−1) ((a/b))  ⇒ ∫ (dx/(k cos (x−θ))) , with k = (√(a^2 +b^2 ))  ⇒ (1/k)∫ sec (x−θ) dx =  ⇒(1/k) ln ∣ sec (x−θ)+tan (x−θ) ∣ +c =  (1/(√(a^2 +b^2 ))) ln ∣ sec (x−tan^(−1) ((a/b)))+ tan (x−tan^(−1) ((a/b)))∣ + c

asinx+bcosx=a2+b2cos(xθ)whereθ=tan1(ab)dxkcos(xθ),withk=a2+b21ksec(xθ)dx=1klnsec(xθ)+tan(xθ)+c=1a2+b2lnsec(xtan1(ab))+tan(xtan1(ab))+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com