All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 83691 by niroj last updated on 05/Mar/20
evaluate:∫dxasinx+bcosx
Commented by mathmax by abdo last updated on 05/Mar/20
weusechangementtan(x2)=t⇒I=∫1a2t1+t2+b1−t21+t2×2dt1+t2=2∫dt2at+b−bt2=−2∫dtbt2−2at−bΔ′=a2+b2>0⇒t1=a+a2+b2bandt2=a−a2+b2b⇒I=−2∫dtb(t−t1)(t−t2)=−2b(t1−t2)∫(1t−t1−1t−t2)dt=−2b×2a2+b2bln∣t−t1t−t2∣+C=−1a2+b2ln∣tan(x2)−a+a2+b2btan(x2)−a−a2+b2b∣+C=−1a2+b2ln∣btan(x2)−a−a2+b2btan(x2)−a+a2+b2∣+C
Commented by john santu last updated on 06/Mar/20
ifyouwanttoshortcut∫dxasinx+bcosx=1a2+b2ln∣a+b+a2+b2a+b−a2+b2∣+c
Answered by john santu last updated on 05/Mar/20
asinx+bcosx=a2+b2cos(x−θ)whereθ=tan−1(ab)⇒∫dxkcos(x−θ),withk=a2+b2⇒1k∫sec(x−θ)dx=⇒1kln∣sec(x−θ)+tan(x−θ)∣+c=1a2+b2ln∣sec(x−tan−1(ab))+tan(x−tan−1(ab))∣+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com