Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 83719 by Roland Mbunwe last updated on 05/Mar/20

Question.         ^(Show  that ∫_0 ^(Π/2) ((cosx)/(3+cos^2 x))dx=(1/4)ln3)

$${Question}.\:\:\:\:\:\:\:\:\overset{{Show}\:\:{that}\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{{cosx}}{\mathrm{3}+{cos}^{\mathrm{2}} {x}}{dx}=\frac{\mathrm{1}}{\mathrm{4}}{ln}\mathrm{3}} {\:} \\ $$

Commented by mathmax by abdo last updated on 05/Mar/20

I=∫_0 ^(π/2)  ((cosx)/(3+cos^2 x))dx ⇒I =∫_0 ^(π/2)  ((cosxdx)/(4−sin^2 x)) =_(sinx =t)    ∫_0 ^1  (dt/(4−t^2 ))  =(1/4)∫_0 ^1 ((1/(2−t))+(1/(2+t)))dt =(1/4)[ln∣((2+t)/(2−t))∣]_0 ^1  =(1/4)(ln(3)) =(1/4)ln(3)

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cosx}}{\mathrm{3}+{cos}^{\mathrm{2}} {x}}{dx}\:\Rightarrow{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cosxdx}}{\mathrm{4}−{sin}^{\mathrm{2}} {x}}\:=_{{sinx}\:={t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{\mathrm{4}−{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}−{t}}+\frac{\mathrm{1}}{\mathrm{2}+{t}}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{4}}\left[{ln}\mid\frac{\mathrm{2}+{t}}{\mathrm{2}−{t}}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{4}}\left({ln}\left(\mathrm{3}\right)\right)\:=\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\mathrm{3}\right) \\ $$

Answered by jagoll last updated on 05/Mar/20

∫ ((cos x dx)/(4−sin^2 x)) = ∫ ((d(sin x))/(4−sin^2 x))  let u = sin x  ∫ (du/((2+u)(2−u))) = ∫(1/4) (du/((2−u))) + ∫ (1/4) (du/((2+u)))  = (1/4)ln ∣ 4−u^2  ∣ + c  = (1/4) ln ∣4−sin^2 x∣ + c   = (1/4)ln∣3+cos^2 x∣ ∣_0 ^(π/2)   = (1/4)ln∣3∣ − (1/4)ln∣4∣

$$\int\:\frac{\mathrm{cos}\:\mathrm{x}\:\mathrm{dx}}{\mathrm{4}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=\:\int\:\frac{\mathrm{d}\left(\mathrm{sin}\:\mathrm{x}\right)}{\mathrm{4}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\mathrm{let}\:\mathrm{u}\:=\:\mathrm{sin}\:\mathrm{x} \\ $$$$\int\:\frac{\mathrm{du}}{\left(\mathrm{2}+\mathrm{u}\right)\left(\mathrm{2}−\mathrm{u}\right)}\:=\:\int\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{du}}{\left(\mathrm{2}−\mathrm{u}\right)}\:+\:\int\:\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{du}}{\left(\mathrm{2}+\mathrm{u}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\mid\:\mathrm{4}−\mathrm{u}^{\mathrm{2}} \:\mid\:+\:\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{ln}\:\mid\mathrm{4}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\mid\:+\:\mathrm{c}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{3}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\mid\:\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{3}\mid\:−\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{4}\mid \\ $$

Commented by john santu last updated on 05/Mar/20

typo sir .  ∫(1/4) (du/(2−u)) = −(1/4) ln ∣2−u∣  so = −(1/4)ln∣2−u∣ +(1/4)ln∣2+u∣   = (1/4)ln ∣((2+sin x)/(2−sin x))∣ + c

$$\mathrm{typo}\:\mathrm{sir}\:. \\ $$$$\int\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{du}}{\mathrm{2}−\mathrm{u}}\:=\:−\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{ln}\:\mid\mathrm{2}−\mathrm{u}\mid \\ $$$$\mathrm{so}\:=\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{2}−\mathrm{u}\mid\:+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{2}+\mathrm{u}\mid\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\mid\frac{\mathrm{2}+\mathrm{sin}\:\mathrm{x}}{\mathrm{2}−\mathrm{sin}\:\mathrm{x}}\mid\:+\:\mathrm{c} \\ $$

Answered by MJS last updated on 05/Mar/20

∫((cos x)/(3+cos^2  x))dx=       [t=sin x → (dt/(cos x))]  =−∫(dt/(t^2 −4))=−(1/4)ln ∣((t−2)/(t+2))∣ =  =−(1/4)ln ∣((sin x −2)/(sin x +2))∣ +C  ⇒ ∫_0 ^(π/2) ((cos x)/(3+cos^2  x))dx=(1/4)ln 3

$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{3}+\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\:\rightarrow\:\frac{{dt}}{\mathrm{cos}\:{x}}\right] \\ $$$$=−\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{4}}=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\mid\frac{{t}−\mathrm{2}}{{t}+\mathrm{2}}\mid\:= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\mid\frac{\mathrm{sin}\:{x}\:−\mathrm{2}}{\mathrm{sin}\:{x}\:+\mathrm{2}}\mid\:+{C} \\ $$$$\Rightarrow\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{cos}\:{x}}{\mathrm{3}+\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com