Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 83719 by Roland Mbunwe last updated on 05/Mar/20

Question.         ^(Show  that ∫_0 ^(Π/2) ((cosx)/(3+cos^2 x))dx=(1/4)ln3)

Question.Showthat0Π2cosx3+cos2xdx=14ln3

Commented by mathmax by abdo last updated on 05/Mar/20

I=∫_0 ^(π/2)  ((cosx)/(3+cos^2 x))dx ⇒I =∫_0 ^(π/2)  ((cosxdx)/(4−sin^2 x)) =_(sinx =t)    ∫_0 ^1  (dt/(4−t^2 ))  =(1/4)∫_0 ^1 ((1/(2−t))+(1/(2+t)))dt =(1/4)[ln∣((2+t)/(2−t))∣]_0 ^1  =(1/4)(ln(3)) =(1/4)ln(3)

I=0π2cosx3+cos2xdxI=0π2cosxdx4sin2x=sinx=t01dt4t2=1401(12t+12+t)dt=14[ln2+t2t]01=14(ln(3))=14ln(3)

Answered by jagoll last updated on 05/Mar/20

∫ ((cos x dx)/(4−sin^2 x)) = ∫ ((d(sin x))/(4−sin^2 x))  let u = sin x  ∫ (du/((2+u)(2−u))) = ∫(1/4) (du/((2−u))) + ∫ (1/4) (du/((2+u)))  = (1/4)ln ∣ 4−u^2  ∣ + c  = (1/4) ln ∣4−sin^2 x∣ + c   = (1/4)ln∣3+cos^2 x∣ ∣_0 ^(π/2)   = (1/4)ln∣3∣ − (1/4)ln∣4∣

cosxdx4sin2x=d(sinx)4sin2xletu=sinxdu(2+u)(2u)=14du(2u)+14du(2+u)=14ln4u2+c=14ln4sin2x+c=14ln3+cos2x0π2=14ln314ln4

Commented by john santu last updated on 05/Mar/20

typo sir .  ∫(1/4) (du/(2−u)) = −(1/4) ln ∣2−u∣  so = −(1/4)ln∣2−u∣ +(1/4)ln∣2+u∣   = (1/4)ln ∣((2+sin x)/(2−sin x))∣ + c

typosir.14du2u=14ln2uso=14ln2u+14ln2+u=14ln2+sinx2sinx+c

Answered by MJS last updated on 05/Mar/20

∫((cos x)/(3+cos^2  x))dx=       [t=sin x → (dt/(cos x))]  =−∫(dt/(t^2 −4))=−(1/4)ln ∣((t−2)/(t+2))∣ =  =−(1/4)ln ∣((sin x −2)/(sin x +2))∣ +C  ⇒ ∫_0 ^(π/2) ((cos x)/(3+cos^2  x))dx=(1/4)ln 3

cosx3+cos2xdx=[t=sinxdtcosx]=dtt24=14lnt2t+2==14lnsinx2sinx+2+Cπ20cosx3+cos2xdx=14ln3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com