Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 83767 by mr W last updated on 05/Mar/20

Commented by mr W last updated on 06/Mar/20

Find the minimum of the perimeter  of triangle PQR.

FindtheminimumoftheperimeteroftrianglePQR.

Answered by mr W last updated on 06/Mar/20

Method 1  say Q(a,a^2 ), R(b,0)  perimeter of triangle p  p=(√((4−a)^2 +(3−a^2 )^2 ))+(√((4−b)^2 +3^2 ))+(√((a−b)^2 +a^4 ))  (∂p/∂a)=((−(4−a)−2a(3−a^2 ))/(√((4−a)^2 +(3−a^2 )^2 )))+(((a−b)+2a^3 )/(√((a−b)^2 +a^4 )))=0  ⇒ ((4+5a−2a^3 )/(√((4−a)^2 +(3−a^2 )^2 )))=((a−b+2a^3 )/(√((a−b)^2 +a^4 )))   ..(i)  (∂p/∂b)=((−(4−b))/(√((4−b)^2 +3^2 )))+((−(a−b))/(√((a−b)^2 +a^4 )))=0  ⇒ ((b−4)/(√((4−b)^2 +3^2 )))=((a−b)/(√((a−b)^2 +a^4 )))   ..(ii)   (((b−4)^2 )/((4−b)^2 +3^2 ))=(((a−b)^2 )/((a−b)^2 +a^4 ))  (3^2 /((b−4)^2 ))=(a^4 /((a−b)^2 ))  (3/(4−b))=(a^2 /(b−a))  (3+a^2 )b=a(4a+3)  ⇒b=((a(4a+3))/(a^2 +3))   put this into (i):  ⇒a≈1.3869  ⇒b≈2.4078

Method1sayQ(a,a2),R(b,0)perimeteroftrianglepp=(4a)2+(3a2)2+(4b)2+32+(ab)2+a4pa=(4a)2a(3a2)(4a)2+(3a2)2+(ab)+2a3(ab)2+a4=04+5a2a3(4a)2+(3a2)2=ab+2a3(ab)2+a4..(i)pb=(4b)(4b)2+32+(ab)(ab)2+a4=0b4(4b)2+32=ab(ab)2+a4..(ii)(b4)2(4b)2+32=(ab)2(ab)2+a432(b4)2=a4(ab)234b=a2ba(3+a2)b=a(4a+3)b=a(4a+3)a2+3putthisinto(i):a1.3869b2.4078

Commented by jagoll last updated on 06/Mar/20

method 2?

method2?

Answered by mr W last updated on 06/Mar/20

Commented by mr W last updated on 06/Mar/20

Method 2  the tringle with minimum perimeter  is the path which a light ray follows.  if P ′ is the mirror image of P about  x−axis, then P ′RQP represents the  minimum perimeter when a light  ray from P ′ follows this way.  say Q(a,a^2 )  tan α=((a^2 +3)/(4−a))  tan θ=y′=2a ⇒tan 2θ=((4a)/(1−4a^2 ))  (π/2)−β=π−θ−α  2β−α=2θ+α−π  tan (2β−α)=((3−a^2 )/(4−a))  tan (2θ+α)=((3−a^2 )/(4−a))  ((((4a)/(1−4a^2 ))+((a^2 +3)/(4−a)))/(1−((4a)/(1−4a^2 ))×((a^2 +3)/(4−a))))=((3−a^2 )/(4−a))  ((4a(4−a)+(a^2 +3)(1−4a^2 ))/((1−4a^2 )(4−a)−4a(a^2 +3)))=((3−a^2 )/(4−a))  ((16a+3−4a^4 −15a^2 )/(4−16a^2 −13a))=((3−a^2 )/(4−a))  ⇒2a^4 −16a^3 +a^2 −12a+50=0  ⇒a≈1.3869

Method2thetringlewithminimumperimeteristhepathwhichalightrayfollows.ifPisthemirrorimageofPaboutxaxis,thenPRQPrepresentstheminimumperimeterwhenalightrayfromPfollowsthisway.sayQ(a,a2)tanα=a2+34atanθ=y=2atan2θ=4a14a2π2β=πθα2βα=2θ+απtan(2βα)=3a24atan(2θ+α)=3a24a4a14a2+a2+34a14a14a2×a2+34a=3a24a4a(4a)+(a2+3)(14a2)(14a2)(4a)4a(a2+3)=3a24a16a+34a415a2416a213a=3a24a2a416a3+a212a+50=0a1.3869

Commented by jagoll last updated on 06/Mar/20

waw great sir

wawgreatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com