Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 83774 by jagoll last updated on 06/Mar/20

Given 2(√(log_3  x−1)) − log_3  x^3  +8 > 0  have the solution a ≤ x < b.   what is b ?

Given2log3x1log3x3+8>0 havethesolutionax<b. whatisb?

Answered by john santu last updated on 06/Mar/20

⇒ 2(√(log_3  x−1)) −3log_3  x + 8 >0  let (√(log_3  x−1)) = t , t ≥ 0 (i)  ⇒ 2t − 3(t^2 +1) +8 >0  3t^2  +3 −2t − 8 < 0  3t^2  −2t −5 < 0   (3t−5)(t+1) < 0 ⇒ −1 < t < (5/3) (ii)  from (i) & (ii)   0 ≤ t < (5/3) ⇒ 0 ≤ (√(log_3  x−1)) < (5/3)  0 ≤ log_3  x−1 < ((25)/9)  1 ≤ log_3  x < ((34)/9) ⇔ 3^1  ≤ x < 3^((34)/9)   so we get b = 3^((34)/9)  ⇐ the solution

2log3x13log3x+8>0 letlog3x1=t,t0(i) 2t3(t2+1)+8>0 3t2+32t8<0 3t22t5<0 (3t5)(t+1)<01<t<53(ii) from(i)&(ii) 0t<530log3x1<53 0log3x1<259 1log3x<34931x<3349 sowegetb=3349thesolution

Commented byjagoll last updated on 06/Mar/20

thank you mister

thankyoumister

Terms of Service

Privacy Policy

Contact: info@tinkutara.com