Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 83849 by Rio Michael last updated on 06/Mar/20

Gven that y = e^(−x) sinbx ,where b is a constant,show that   (d^2 y/dx^2 ) + 2(dy/dx) + (1 + b^2 )y = 0.

$$\mathrm{Gven}\:\mathrm{that}\:{y}\:=\:{e}^{−{x}} \mathrm{sin}{bx}\:,\mathrm{where}\:{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant},\mathrm{show}\:\mathrm{that} \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}\frac{{dy}}{{dx}}\:+\:\left(\mathrm{1}\:+\:{b}^{\mathrm{2}} \right){y}\:=\:\mathrm{0}. \\ $$

Commented by niroj last updated on 06/Mar/20

      Given,      y= e^(−x) sin bx....(i)      (dy/dx)= −1.e^(−x) .sinbx+e^(−x) .b.cos bx      (dy/dx)= −y+e^(−x) .bcosbx .....(ii) (∵ y=e^(−x) sin bx)      (d^2 y/dx^2 )= −(dy/dx)+(−1.e^(−x) b cos bx−e^(−x) b^2 sinbx)      (d^2 y/dx^2 )= −(dy/dx)−e^x bcosbx−b^2 y      (d^2 y/dx^2 )= −(dy/dx)−((dy/dx)+y)−b^2 y   {  from..(ii)}     (d^2 y/dx^2 )= −(dy/dx)−(dy/dx)−y−b^2 y      (d^2 y/dx^2 )= −2(dy/dx)−(1+b^2 )y   ∴  (d^2 y/dx^2 )+2(dy/dx)+(1+b^2 )y=0  hence proved//.

$$\:\: \\ $$$$\:\:\mathrm{Given}, \\ $$$$\:\:\:\:\mathrm{y}=\:\mathrm{e}^{−\mathrm{x}} \mathrm{sin}\:\mathrm{bx}....\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=\:−\mathrm{1}.\mathrm{e}^{−\mathrm{x}} .\mathrm{sinbx}+\mathrm{e}^{−\mathrm{x}} .\mathrm{b}.\mathrm{cos}\:\mathrm{bx} \\ $$$$\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=\:−\mathrm{y}+\mathrm{e}^{−\mathrm{x}} .\mathrm{bcosbx}\:.....\left(\mathrm{ii}\right)\:\left(\because\:\mathrm{y}=\mathrm{e}^{−\mathrm{x}} \mathrm{sin}\:\mathrm{bx}\right) \\ $$$$\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=\:−\frac{\mathrm{dy}}{\mathrm{dx}}+\left(−\mathrm{1}.\mathrm{e}^{−\mathrm{x}} \mathrm{b}\:\mathrm{cos}\:\mathrm{bx}−\mathrm{e}^{−\mathrm{x}} \mathrm{b}^{\mathrm{2}} \mathrm{sinbx}\right) \\ $$$$\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=\:−\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{e}^{\mathrm{x}} \mathrm{bcosbx}−\mathrm{b}^{\mathrm{2}} \mathrm{y} \\ $$$$\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=\:−\frac{\mathrm{dy}}{\mathrm{dx}}−\left(\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}\right)−\mathrm{b}^{\mathrm{2}} \mathrm{y}\:\:\:\left\{\:\:\mathrm{from}..\left(\mathrm{ii}\right)\right\} \\ $$$$\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=\:−\frac{\mathrm{dy}}{\mathrm{dx}}−\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{y}−\mathrm{b}^{\mathrm{2}} \mathrm{y} \\ $$$$\:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=\:−\mathrm{2}\frac{\mathrm{dy}}{\mathrm{dx}}−\left(\mathrm{1}+\mathrm{b}^{\mathrm{2}} \right)\mathrm{y} \\ $$$$\:\therefore\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{2}\frac{\mathrm{dy}}{\mathrm{dx}}+\left(\mathrm{1}+\mathrm{b}^{\mathrm{2}} \right)\mathrm{y}=\mathrm{0}\:\:\mathrm{hence}\:\mathrm{proved}//. \\ $$

Commented by Rio Michael last updated on 06/Mar/20

thanks sir

$${thanks}\:{sir} \\ $$

Commented by niroj last updated on 07/Mar/20

you must welcome sir.

$${you}\:{must}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com