All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 83849 by Rio Michael last updated on 06/Mar/20
Gventhaty=e−xsinbx,wherebisaconstant,showthatd2ydx2+2dydx+(1+b2)y=0.
Commented by niroj last updated on 06/Mar/20
Given,y=e−xsinbx....(i)dydx=−1.e−x.sinbx+e−x.b.cosbxdydx=−y+e−x.bcosbx.....(ii)(∵y=e−xsinbx)d2ydx2=−dydx+(−1.e−xbcosbx−e−xb2sinbx)d2ydx2=−dydx−exbcosbx−b2yd2ydx2=−dydx−(dydx+y)−b2y{from..(ii)}d2ydx2=−dydx−dydx−y−b2yd2ydx2=−2dydx−(1+b2)y∴d2ydx2+2dydx+(1+b2)y=0henceproved//.
Commented by Rio Michael last updated on 06/Mar/20
thankssir
Commented by niroj last updated on 07/Mar/20
youmustwelcomesir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com