All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 83864 by jagoll last updated on 07/Mar/20
whatMaclaurinseriesoffunctiontan(x)?
Commented by niroj last updated on 07/Mar/20
Solution:let,f(x)=tanx,f0(0)=0f1(x)=sec2x,f1(0)=1f2(x)=2secx.secx.tanx,f2(0)=0=2sec2xtanxf3(x)=4sec2x.tan2x+2sec4x,f3(0)=2f4(x)=8sec2xtan3x+8sec4x.tanx.,f4(0)=0f5(x)=16sec2xtan4x.+8sec2x.3tan2x.sec2x+32sec3x.secxtan2x+8sec6x,f5(0)=8now,weknowmaclaurin′sseriesofexpansion:f(x)=f(0)+x1!f1(0)+x22!f2(0)+x33!f3(0)+x44!f4(0)+x55!f5(0)tanx=0+x.(1)+x22(0)+x36.(2)+x424(0)+x5120.(8)=x+13x3+215x5+.....henceprovedmaclaurin′sfunctionoftanx.
Commented by jagoll last updated on 07/Mar/20
thankyousir
youmustwelcomesir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com