Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 83919 by john santu last updated on 08/Mar/20

lim_(x→+∞)  ((3/π)arc tan x)^(2x)  = ?

limx+(3πarctanx)2x=?

Commented by john santu last updated on 08/Mar/20

= e^(lim_(x→+∞)  (ln((3/π)tan^(−1) (x))^(2x) ))   = e^(lim_(x→+∞)  (((ln((3/π)tan^(−1) (x)))/(1/(2x)))))   = e^(lim_(x→+∞)  (π/(3tan^(−1) (x))). (3/(π(1+x^2 ))).(−2x^2 ))   =e^(lim_(x→+∞)  (π/(3((π/2))))×lim_(x→+∞)  ((−6x^2 )/(π+πx^2 )))   = e^((2/3)×(−(6/π)))  = e^(−(4/π))   = (1/(e^4 )^(1/(π  )) )

=elimx+(ln(3πtan1(x))2x)=elimx+(ln(3πtan1(x))12x)=elimx+π3tan1(x).3π(1+x2).(2x2)=elimx+π3(π2)×limx+6x2π+πx2=e23×(6π)=e4π=1e4π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com