All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 83927 by M±th+et£s last updated on 08/Mar/20
∫sinh(x)+e3xsinh(x)−exdx
Answered by TANMAY PANACEA last updated on 08/Mar/20
∫ex−e−x2+e3xex−e−x2−exdx=∫ex−e−x+2e3xex−e−x−2exdx=∫e2x−1+2e4x−e2x−1dx=∫1−2e4x−e2xe2x+1dxt=e2x+1→dt=e2x×2×dxdt2(t−1)=dx∫1−2(t−1)2−(t−1)t×dt2(t−1)12∫1−2(t−1)2−(t−1)t(t−1)dt12∫t−(t−1)t(t−1)dt−∫t−1tdt−12∫dtt12∫dtt−1−12∫dtt−∫dt+∫dtt−12∫dtt12ln(t−1)−t+c12ln(e2x)−(e2x+1)+cx−(e2x+1)+c
Commented by M±th+et£s last updated on 08/Mar/20
thankyousirnicesolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com