Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83927 by M±th+et£s last updated on 08/Mar/20

∫((sinh(x)+e^(3x) )/(sinh(x)−e^x )) dx

sinh(x)+e3xsinh(x)exdx

Answered by TANMAY PANACEA last updated on 08/Mar/20

∫((((e^x −e^(−x) )/2)+e^(3x) )/(((e^x −e^(−x) )/2)−e^x ))dx  =∫((e^x −e^(−x) +2e^(3x) )/(e^x −e^(−x) −2e^x ))dx  =∫((e^(2x) −1+2e^(4x) )/(−e^(2x) −1))dx  =∫((1−2e^(4x) −e^(2x) )/(e^(2x) +1))dx  t=e^(2x) +1→dt=e^(2x) ×2×dx  (dt/(2(t−1)))=dx  ∫((1−2(t−1)^2 −(t−1))/t)×(dt/(2(t−1)))  (1/2)∫((1−2(t−1)^2 −(t−1))/(t(t−1)))dt  (1/2)∫((t−(t−1))/(t(t−1)))dt−∫((t−1)/t)dt−(1/2)∫(dt/t)  (1/2)∫(dt/(t−1))−(1/2)∫(dt/t)−∫dt+∫(dt/t)−(1/2)∫(dt/t)  (1/2)ln(t−1)−t+c  (1/2)ln(e^(2x) )−(e^(2x) +1)+c  x−(e^(2x) +1)+c

exex2+e3xexex2exdx=exex+2e3xexex2exdx=e2x1+2e4xe2x1dx=12e4xe2xe2x+1dxt=e2x+1dt=e2x×2×dxdt2(t1)=dx12(t1)2(t1)t×dt2(t1)1212(t1)2(t1)t(t1)dt12t(t1)t(t1)dtt1tdt12dtt12dtt112dttdt+dtt12dtt12ln(t1)t+c12ln(e2x)(e2x+1)+cx(e2x+1)+c

Commented by M±th+et£s last updated on 08/Mar/20

thank you sir nice solution

thankyousirnicesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com