All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 83961 by mathmax by abdo last updated on 08/Mar/20
findI=∫e−xcos4xdxandJ=∫e−xsin4xdx
Commented by mathmax by abdo last updated on 11/Mar/20
wehaveI+J=∫e−x(cos4x+sin4x)dx=∫e−x((cos2x+sin2x)2−2cos2xsin2x)dx=∫e−x(1−2(sin(2x)2)2)dx=∫e−x(1−12sin2(2x))dx=∫e−xdx−12∫e−x1−cos(4x)2dx=−e−x−14∫e−xdx+14∫e−xcos(4x)dx=(−1+14)e−x+14Re(∫e−x+i4xdx)∫e(−1+4i)xdx=1−1+4ie(−1+4i)x=−11−4ie(−1+4i)x=−1+4i17e−x(cos(4x)+isin(4x))=−e−x17(cos(4x)+isin(4x)+4icos(4x)−4sin(4x))⇒I+J=−34e−x−e−x68(cos(4x)−4sin(4x))I−J=∫e−x(cos4x−sin2x)dx=∫e−x(cos2x−sin2x)dx=∫e−xcos(2x)dx=Re(∫e(−1+2i)xdx)wehave∫e(−1+2i)xdx=1−1+2ie(−1+2i)x=−1+2i5e−x(cos(2x)+isin(2x))=−e−x5(cos(2x)+isin(2x)+2icos(2x)−2sin(2x))⇒I−J=−e−x5(cos(2x)−2sin(2x))nowitseazytodetermineIandJ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com