Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83961 by mathmax by abdo last updated on 08/Mar/20

find I =∫ e^(−x)  cos^4 xdx  and J =∫ e^(−x)  sin^4  xdx

findI=excos4xdxandJ=exsin4xdx

Commented by mathmax by abdo last updated on 11/Mar/20

we have I+J =∫ e^(−x) (cos^4 x+sin^4 x)dx  =∫ e^(−x) ( (cos^2 x+sin^2 x)^2 −2cos^2 x sin^2 x)dx  =∫ e^(−x) (1−2(((sin(2x))/2))^2 )dx =∫ e^(−x) (1−(1/2)sin^2 (2x))dx  =∫ e^(−x)  dx−(1/2) ∫ e^(−x) ((1−cos(4x))/2)dx  =−e^(−x) −(1/4) ∫ e^(−x)  dx +(1/4) ∫ e^(−x)  cos(4x)dx  =(−1+(1/4))e^(−x)  +(1/4)Re(∫ e^(−x+i4x) dx)  ∫ e^((−1+4i)x) dx =(1/(−1+4i))e^((−1+4i)x)   =−(1/(1−4i))e^((−1+4i)x)   =−((1+4i)/(17))e^(−x) (cos(4x)+isin(4x))  =−(e^(−x) /(17))(cos(4x)+isin(4x)+4icos(4x)−4sin(4x)) ⇒  I+J =−(3/4)e^(−x)  −(e^(−x) /(68))(cos(4x)−4sin(4x))  I−J =∫ e^(−x) (cos^4 x−sin^2 x)dx =∫ e^(−x) (cos^2 x−sin^2 x)dx  =∫ e^(−x)  cos(2x)dx =Re(∫ e^((−1+2i)x) dx)  we have ∫ e^((−1+2i)x) dx =(1/(−1+2i))e^((−1+2i)x)   =−((1+2i)/5)e^(−x) ( cos(2x)+isin(2x))  =−(e^(−x) /5)(  cos(2x)+isin(2x)+2icos(2x)−2sin(2x)) ⇒  I−J =−(e^(−x) /5)(cos(2x)−2sin(2x))  nowits eazy to determine I and J

wehaveI+J=ex(cos4x+sin4x)dx=ex((cos2x+sin2x)22cos2xsin2x)dx=ex(12(sin(2x)2)2)dx=ex(112sin2(2x))dx=exdx12ex1cos(4x)2dx=ex14exdx+14excos(4x)dx=(1+14)ex+14Re(ex+i4xdx)e(1+4i)xdx=11+4ie(1+4i)x=114ie(1+4i)x=1+4i17ex(cos(4x)+isin(4x))=ex17(cos(4x)+isin(4x)+4icos(4x)4sin(4x))I+J=34exex68(cos(4x)4sin(4x))IJ=ex(cos4xsin2x)dx=ex(cos2xsin2x)dx=excos(2x)dx=Re(e(1+2i)xdx)wehavee(1+2i)xdx=11+2ie(1+2i)x=1+2i5ex(cos(2x)+isin(2x))=ex5(cos(2x)+isin(2x)+2icos(2x)2sin(2x))IJ=ex5(cos(2x)2sin(2x))nowitseazytodetermineIandJ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com