Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 84157 by redmiiuser last updated on 10/Mar/20

if a circle having an   equation x^2 +y^2 −6x−8y=0  is intersected at A and B  by x+y=1.find the   equation of the circle  on AB as diameter

ifacirclehavinganequationx2+y26x8y=0isintersectedatAandBbyx+y=1.findtheequationofthecircleonABasdiameter

Answered by TANMAY PANACEA last updated on 10/Mar/20

x^2 +(1−x)^2 −6x−8(1−x)=0  x^2 +1−2x+x^2 −6x−8+8x=0  2x^2 −7=0    x=±(√(7/2))   A((√(7/2)) ,1−(√(7/2)) )  B(−(√(7/2)) ,1+(√(7/2)) )  centre of required circle mid point of AB  (0,1)  diameter=distance between AB  2r=[(2(√(7/2)) )^2 +(2(√(7/2)) )^2 ]^(1/2)   2r=[(4×(7/2)+4×(7/2))]^(1/2) =2(√7)   r=(√7)   eqn circle  (x−0)^2 +(y−1)^2 =((√7) )^2   x^2 +y^2 −2y−6=0

x2+(1x)26x8(1x)=0x2+12x+x26x8+8x=02x27=0x=±72A(72,172)B(72,1+72)centreofrequiredcirclemidpointofAB(0,1)diameter=distancebetweenAB2r=[(272)2+(272)2]122r=[(4×72+4×72)]12=27r=7eqncircle(x0)2+(y1)2=(7)2x2+y22y6=0

Answered by john santu last updated on 10/Mar/20

the equation of circle   (x−(√(7/2)))(x+(√(7/2)))+(y−(1+(√(7/2))))(y−(1−(√(7/2))))=0  x^2 −(7/2)+y^2 −2y−(5/2) = 0  x^2  + y^2  −2y − 6 =0

theequationofcircle(x72)(x+72)+(y(1+72))(y(172))=0x272+y22y52=0x2+y22y6=0

Answered by TANMAY PANACEA last updated on 10/Mar/20

another way  the eqn of circle  (x^2 +y^2 −6x−8y)+λ(x+y−1)=0  x^2 +y^2 +x(−6+λ)+y(−8+λ)−λ=0  centre of required cirle is  comparing with x^2 +y^2 +2gx+2fy+c=0  2gx=(−6+λ)x→2g=−6+λ       g=(((λ−6)/2))  2fy=(−8+λ)y→2f=−8+λ       f=(((λ−8)/2))  centre of required circle(−g,−f)  (((6−λ)/2),((8−λ)/2)) which lies on x+y=1  so ((6−λ)/2)+((8−λ)/2)=1→7−λ=1   so λ=6  reqired circle  x^2 +y^2 +x(−6+6)+y(−8+6)−6=0  x^2 +y^2 −2y−6=0

anotherwaytheeqnofcircle(x2+y26x8y)+λ(x+y1)=0x2+y2+x(6+λ)+y(8+λ)λ=0centreofrequiredcirleiscomparingwithx2+y2+2gx+2fy+c=02gx=(6+λ)x2g=6+λg=(λ62)2fy=(8+λ)y2f=8+λf=(λ82)centreofrequiredcircle(g,f)(6λ2,8λ2)whichliesonx+y=1so6λ2+8λ2=17λ=1soλ=6reqiredcirclex2+y2+x(6+6)+y(8+6)6=0x2+y22y6=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com