All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 84212 by jagoll last updated on 10/Mar/20
y′=(2x+3y+1)2findthesolution
Commented by niroj last updated on 10/Mar/20
dydx=(2x+3y+1)2put,2x+3y+1=v2+3dydx=dvdx3dydx=dvdx−2dydx=13(dvdx−2)13(dvdx−2)=v2dvdx−2=3v2dvdx=3v2+213v2+2dv=dxintegratingbothside.13∫1(v)2+(23)2dv=∫dx13.123tan−1v23=x+c13.32.tan−1v32=x+c16tan−1v62=x+ctan−1v.62=6(x+c)v62=tan6(x+c)(2x+3y+1)6=2tan6(x+c)2x+3y+1=63tan6(x+c).
Answered by mr W last updated on 10/Mar/20
lett=2x+3y+1dtdx=2+3dydxy′=dydx=13(dtdx−2)13(dtdx−2)=t2dtdx=3t2+2dt3t2+2=dx∫dt3t2+2=∫dxtan−13t66=x+C⇒t=63tan(6x+C)⇒2x+3y+1=63tan(6x+C)⇒y=13[63tan(6x+C)−2x−1]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com