Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 84212 by jagoll last updated on 10/Mar/20

y′ = (2x+3y+1)^2   find the solution

y=(2x+3y+1)2findthesolution

Commented by niroj last updated on 10/Mar/20

  (dy/dx)= (2x+3y+1)^2    put,  2x+3y+1=v       2+3(dy/dx)= (dv/dx)         3 (dy/dx)= (dv/dx)−2          (dy/dx)= (1/3)((dv/dx)−2)    (1/3)((dv/dx)−2)=v^2      (dv/dx)−2=3v^2       (dv/dx)= 3v^2 +2      (1/(3v^2 +2))dv=dx     integrating both side.    (1/3) ∫(1/((v)^2 +((√(2/3)) )^2 ))dv=∫dx    (1/3).(1/(√(2/3)))tan^(−1) (v/(√(2/3))) = x+c    (1/3).((√3)/(√2)).tan^(−1) ((v(√3))/(√2)) =x+c      (1/(√6))tan^(−1)  v ((√6)/2)=x+c      tan^(−1) v. ((√6)/2)= (√6) (x+c)        ((v(√6))/2)= tan(√6)  (x+c)        (2x+3y+1)(√6) =2 tan(√6) (x+c)    2x+3y+1 = ((√6)/3) tan(√6)  (x+c) .

dydx=(2x+3y+1)2put,2x+3y+1=v2+3dydx=dvdx3dydx=dvdx2dydx=13(dvdx2)13(dvdx2)=v2dvdx2=3v2dvdx=3v2+213v2+2dv=dxintegratingbothside.131(v)2+(23)2dv=dx13.123tan1v23=x+c13.32.tan1v32=x+c16tan1v62=x+ctan1v.62=6(x+c)v62=tan6(x+c)(2x+3y+1)6=2tan6(x+c)2x+3y+1=63tan6(x+c).

Answered by mr W last updated on 10/Mar/20

let t=2x+3y+1  (dt/dx)=2+3(dy/dx)  y′=(dy/dx)=(1/3)((dt/dx)−2)  (1/3)((dt/dx)−2)=t^2   (dt/dx)=3t^2 +2  (dt/(3t^2 +2))=dx  ∫(dt/(3t^2 +2))=∫dx  ((tan^(−1) ((3t)/(√6)))/(√6))=x+C  ⇒t=((√6)/3) tan ((√6)x+C)  ⇒2x+3y+1=((√6)/3) tan ((√6)x+C)  ⇒y=(1/3)[((√6)/3) tan ((√6)x+C)−2x−1]

lett=2x+3y+1dtdx=2+3dydxy=dydx=13(dtdx2)13(dtdx2)=t2dtdx=3t2+2dt3t2+2=dxdt3t2+2=dxtan13t66=x+Ct=63tan(6x+C)2x+3y+1=63tan(6x+C)y=13[63tan(6x+C)2x1]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com