Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 84231 by Rio Michael last updated on 10/Mar/20

A compound pendulum oscillates though a  small angle θ about its equilibrium position  such that     10a((dθ/dt))^2  = 4g cos θ , a >0 . its period is   [A] 2π(√(((5a)/(4g))  ))   [B] ((2π)/5)(√(a/g))  [C] 2π(√(((2g)/(5a)) ))  [D] 2π(√((5a)/g))

Acompoundpendulumoscillatesthougha smallangleθaboutitsequilibriumposition suchthat 10a(dθdt)2=4gcosθ,a>0.itsperiodis [A]2π5a4g[B]2π5ag[C]2π2g5a[D]2π5ag

Answered by TANMAY PANACEA last updated on 10/Mar/20

(dθ/dt)=w=((2π)/T)→T=((2π)/w)  w^2 =((dθ/dt))^2 =((4g)/(10a))cosθ≈((4g)/(10a))×1  w=(√((2g)/(5a))) →T=((2π)/(√((2g)/(5a))))  T=2π×(√((5a)/(2g)))   → i think so

dθdt=w=2πTT=2πw w2=(dθdt)2=4g10acosθ4g10a×1 w=2g5aT=2π2g5a T=2π×5a2githinkso

Commented byRio Michael last updated on 10/Mar/20

thanks,i′ve gotten the idea

thanks,ivegottentheidea

Commented bymr W last updated on 11/Mar/20

answer is wrong sir!  ω here is not the angular velocity, i.e.  ω≠(dθ/dt)  ω is the angular frequency.  we know the angular velocity (dθ/dt) is  not constant, otherwise there is no  oscillation! but ω is a constant!  in fact ω here is defined as (√((elasticity)/(mass))).  please refer to your physics book.    correct answer:  10a((dθ/dt))^2 =4g cos θ  ⇒(dθ/dt)=(√((2g)/(5a)))×(√(cos θ))  ⇒(d^2 θ/dt^2 )=(√((2g)/(5a)))×((−sin θ)/(2(√(cos θ))))×(dθ/dt)  ⇒(d^2 θ/dt^2 )=(√((2g)/(5a)))×((−sin θ)/(2(√(cos θ))))×(√((2g)/(5a)))×(√(cos θ))  ⇒(d^2 θ/dt^2 )=−((g sin θ)/(5a))≈−(g/(5a))θ  ⇒(d^2 θ/dt^2 )+(g/(5a))θ=0  ⇒(d^2 θ/dt^2 )+ω^2 θ=0 with ω=(√(g/(5a)))  period T=((2π)/ω)=2π(√((5a)/g))  ⇒answer [D] is correct.

answeriswrongsir! ωhereisnottheangularvelocity,i.e. ωdθdt ωistheangularfrequency. weknowtheangularvelocitydθdtis notconstant,otherwisethereisno oscillation!butωisaconstant! infactωhereisdefinedaselasticitymass. pleaserefertoyourphysicsbook. correctanswer: 10a(dθdt)2=4gcosθ dθdt=2g5a×cosθ d2θdt2=2g5a×sinθ2cosθ×dθdt d2θdt2=2g5a×sinθ2cosθ×2g5a×cosθ d2θdt2=gsinθ5ag5aθ d2θdt2+g5aθ=0 d2θdt2+ω2θ=0withω=g5a periodT=2πω=2π5ag answer[D]iscorrect.

Commented byTANMAY PANACEA last updated on 11/Mar/20

yes sir you are right...so pls ignore my post

yessiryouareright...soplsignoremypost

Terms of Service

Privacy Policy

Contact: info@tinkutara.com