Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87503 by M±th+et£s last updated on 04/Apr/20

∫(x^2 /(1+x^5 ))dx

x21+x5dx

Commented by MJS last updated on 04/Apr/20

x^5 +1=(x+1)(x^2 −((1−(√5))/2)x+1)(x^2 −((1+(√5))/2)+1)  can you do it now?

x5+1=(x+1)(x2152x+1)(x21+52+1)canyoudoitnow?

Commented by M±th+et£s last updated on 06/Apr/20

sir i tryed a lot but there is no solution  how can you do it

siritryedalotbutthereisnosolutionhowcanyoudoit

Commented by MJS last updated on 06/Apr/20

I will show later

Iwillshowlater

Commented by M±th+et£s last updated on 06/Apr/20

thank you sir

thankyousir

Answered by MJS last updated on 06/Apr/20

x^5 +1=0  x_1 =−1  x_(2, 3) =e^(±i(π/5))   x_(4, 5) =e^(±i((3π)/5))   x^5 +1=(x−x_1 )((x−x_2 )(x−x_3 ))((x−x_4 )(x−x_5 ))=  =(x+1)(x^2 −((1+(√5))/2)x+1)(x^2 −((1−(√5))/2)x+1)  ⇒  (x^2 /(x^5 +1))=(α/(x+1))+((βx+γ)/(x^2 −((1+(√5))/2)x+1))+((δx+ε)/(x^2 −((1−(√5))/2)x+1))  ⇒  α=(1/5)  β=γ=−(1/(10))+((√5)/(10))  δ=ε=−(1/(10))−((√5)/(10))  ⇒  ∫(x^2 /(x^5 +1))dx=  =(1/5)∫(dx/(x+1))−((1−(√5))/(10))∫((x+1)/(x^2 −((1+(√5))/2)x+1))dx−((1+(√5))/(10))∫((x+1)/(x^2 −((1−(√5))/2)x+1))dx  now use formulas

x5+1=0x1=1x2,3=e±iπ5x4,5=e±i3π5x5+1=(xx1)((xx2)(xx3))((xx4)(xx5))==(x+1)(x21+52x+1)(x2152x+1)x2x5+1=αx+1+βx+γx21+52x+1+δx+ϵx2152x+1α=15β=γ=110+510δ=ϵ=110510x2x5+1dx==15dxx+11510x+1x21+52x+1dx1+510x+1x2152x+1dxnowuseformulas

Commented by M±th+et£s last updated on 06/Apr/20

god bless you sir

godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com