Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 84577 by msup trace by abdo last updated on 14/Mar/20

calculate ∫    (dx/(cosx +cos(2x)+cos(3x)))

calculatedxcosx+cos(2x)+cos(3x)

Commented by jagoll last updated on 14/Mar/20

cos x+cos 3x+cos 2x =   2cos 2x cos x + cos 2x =   cos 2x ( 2cos x +1)   ∫ ((  dx)/(cos 2x (2cos x +1) )) =   let tan ((x/2)) = t

cosx+cos3x+cos2x=2cos2xcosx+cos2x=cos2x(2cosx+1)dxcos2x(2cosx+1)=lettan(x2)=t

Commented by abdomathmax last updated on 14/Mar/20

we have cosx +cos(2x)+cos(3x)  =cosx +cos(3x)+cos(2x)=2cos(2x)cosx +cosx  =cosx(2cos(2x)+1) =cosx(2(2cos^2 x−1)−1)  =cosx(4cos^2 x−3) ⇒  I =∫   (dx/(cosx(4cos^2 x−1))) let decompose  f(t)=(1/(t(4t^2 −1)))=(1/(t(2t−1)(2t+1))) ⇒f(t)=(a/t) +(b/(2t−1)) +(c/(2t+1))  a=−1  b= (2/2)=1  c=((−2)/(−2))=1 ⇒f(t)=−(1/t) +(1/(2t−1)) +(1/(2t+1)) ⇒  I =−∫  (dx/(cosx)) +∫  (dx/(2cosx−1)) +∫  (dx/(2cosx +1))  ∫  (dx/(cosx)) =_(tan((x/2))=u)    ∫   ((2du)/((1+u^2 )×((1−u^2 )/(1+u^2 ))))  =∫  ((2du)/((1−u)(1+u))) =∫ ((1/(1−u))+(1/(1+u)))du  =ln∣((1+u)/(1−u))∣ +c_0 =ln∣((1+tan((x/2)))/(1−tan((x/2))))∣=ln∣tan((x/2)+(π/4))∣ +c_0   ∫  (dx/(2cosx−1)) =_(tan((x/2))=u)   ∫  ((2du)/((1+u^2 )(2((1−u^2 )/(1+u^2 ))−1)))  =∫    ((2du)/(2−2u^2 −1−u^2 )) =∫  ((2du)/(−3u^2 +1))  =−2 ∫   (du/(3u^2 −1)) =−2 ∫  (du/(((√3)u+1)((√3)u−1)))  = ∫ ((1/((√3)u+1))−(1/((√3)u−1)))du  =(1/(√3))ln∣(((√3)u+1)/((√3)u −1))∣ +c_1   =(1/(√3))ln∣(((√3)tan((x/2))+1)/((√3)tan((x/2))−1))∣  +c_1   we folow the same manner to dtermine  ∫  (dx/(2cosx +1))

wehavecosx+cos(2x)+cos(3x)=cosx+cos(3x)+cos(2x)=2cos(2x)cosx+cosx=cosx(2cos(2x)+1)=cosx(2(2cos2x1)1)=cosx(4cos2x3)I=dxcosx(4cos2x1)letdecomposef(t)=1t(4t21)=1t(2t1)(2t+1)f(t)=at+b2t1+c2t+1a=1b=22=1c=22=1f(t)=1t+12t1+12t+1I=dxcosx+dx2cosx1+dx2cosx+1dxcosx=tan(x2)=u2du(1+u2)×1u21+u2=2du(1u)(1+u)=(11u+11+u)du=ln1+u1u+c0=ln1+tan(x2)1tan(x2)∣=lntan(x2+π4)+c0dx2cosx1=tan(x2)=u2du(1+u2)(21u21+u21)=2du22u21u2=2du3u2+1=2du3u21=2du(3u+1)(3u1)=(13u+113u1)du=13ln3u+13u1+c1=13ln3tan(x2)+13tan(x2)1+c1wefolowthesamemannertodterminedx2cosx+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com