All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 84577 by msup trace by abdo last updated on 14/Mar/20
calculate∫dxcosx+cos(2x)+cos(3x)
Commented by jagoll last updated on 14/Mar/20
cosx+cos3x+cos2x=2cos2xcosx+cos2x=cos2x(2cosx+1)∫dxcos2x(2cosx+1)=lettan(x2)=t
Commented by abdomathmax last updated on 14/Mar/20
wehavecosx+cos(2x)+cos(3x)=cosx+cos(3x)+cos(2x)=2cos(2x)cosx+cosx=cosx(2cos(2x)+1)=cosx(2(2cos2x−1)−1)=cosx(4cos2x−3)⇒I=∫dxcosx(4cos2x−1)letdecomposef(t)=1t(4t2−1)=1t(2t−1)(2t+1)⇒f(t)=at+b2t−1+c2t+1a=−1b=22=1c=−2−2=1⇒f(t)=−1t+12t−1+12t+1⇒I=−∫dxcosx+∫dx2cosx−1+∫dx2cosx+1∫dxcosx=tan(x2)=u∫2du(1+u2)×1−u21+u2=∫2du(1−u)(1+u)=∫(11−u+11+u)du=ln∣1+u1−u∣+c0=ln∣1+tan(x2)1−tan(x2)∣=ln∣tan(x2+π4)∣+c0∫dx2cosx−1=tan(x2)=u∫2du(1+u2)(21−u21+u2−1)=∫2du2−2u2−1−u2=∫2du−3u2+1=−2∫du3u2−1=−2∫du(3u+1)(3u−1)=∫(13u+1−13u−1)du=13ln∣3u+13u−1∣+c1=13ln∣3tan(x2)+13tan(x2)−1∣+c1wefolowthesamemannertodtermine∫dx2cosx+1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com