Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 84578 by msup trace by abdo last updated on 14/Mar/20

calculate ∫_0 ^(π/4)   (dx/((cosx +3sinx)^2 ))

calculate0π4dx(cosx+3sinx)2

Commented by jagoll last updated on 14/Mar/20

∫ _0 ^(π/4) (( dx)/(((√(10)) cos (x−tan^(−1) (3))^2 ))  = (1/(10)) ∫ _0 ^(π/4)  sec^2 (x−tan^(−1) (3))dx  =(1/(10)) tan (x−tan^(−1) (3))] _0^(π/4)   = (1/(10)) [tan ((π/4)−tan^(−1) (3))−tan (−tan^(−1) (3))]

π40dx(10cos(xtan1(3))2=110π40sec2(xtan1(3))dx=110tan(xtan1(3))]0π4=110[tan(π4tan1(3))tan(tan1(3))]

Commented by jagoll last updated on 14/Mar/20

=(1/(10)) [((1−3)/(1+3)) +3 ] = (1/(10)) [(5/2)] = (1/4)

=110[131+3+3]=110[52]=14

Commented by abdomathmax last updated on 14/Mar/20

let f(a)=∫_0 ^(π/4)   (dx/(a +cosx +3sinx)) ⇒  f^′ (a)=−∫_0 ^(π/4)  (dx/((a +cosx +3sinx)^2 )) ⇒  ∫_0 ^(π/4)  (dx/((cosx +3sinx)^2 ))=−f^′ (0) let explicit f(a)  f(a) =_(tan((x/2))=t)     ∫_0 ^((√2)−1)    (1/(a+((1−t^2 )/(1+t^2 ))+3((2t)/(1+t^2 ))))((2dt)/(1+t^2 ))  = ∫_0 ^((√2)−1)    ((2dt)/(a(1+t^2 )+1−t^2  +6t))  =∫_0 ^((√2)−1)   (dt/((a−1)t^2  +6t +a+1))  Δ^′ =9−(a−1)(a+1) =9−(a^2 −1)=10−a^2   t_1 =((−3+(√(10−a^2 )))/(a−1))  and t_2 =((−3−(√(10−a^2 )))/(a−1))   (a≠1)  f(a) =∫_0 ^((√2)−1)   ((2dt)/((a−1)(t−t_1 )(t−t_2 )))  =(2/(a−1)) (1/(t_1 −t_2 ))∫_0 ^((√2)−1) {(1/(t−t_1 ))−(1/(t−t_2 ))}dt  =(2/(a−1))×(1/((2(√(10−a^2 )))/(a−1)))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^((√2)−1)   =(1/(√(10−a^2 ))){ln∣(((√2)−1−t_1 )/((√2)−1−t_2 ))∣−ln∣(t_1 /t_2 )∣}  =(1/(√(10−a^2 ))){ln∣(((√2)−1−((−3+(√(10−a^2 )))/(a−1)))/((√2)−1+((3+(√(10−a^2 )))/(a−1))))∣  −ln∣((−3+(√(10−a^2 )))/(−3−(√(10−a^2 ))))∣

letf(a)=0π4dxa+cosx+3sinxf(a)=0π4dx(a+cosx+3sinx)20π4dx(cosx+3sinx)2=f(0)letexplicitf(a)f(a)=tan(x2)=t0211a+1t21+t2+32t1+t22dt1+t2=0212dta(1+t2)+1t2+6t=021dt(a1)t2+6t+a+1Δ=9(a1)(a+1)=9(a21)=10a2t1=3+10a2a1andt2=310a2a1(a1)f(a)=0212dt(a1)(tt1)(tt2)=2a11t1t2021{1tt11tt2}dt=2a1×1210a2a1[lntt1tt2]021=110a2{ln21t121t2lnt1t2}=110a2{ln213+10a2a121+3+10a2a1ln3+10a2310a2

Commented by abdomathmax last updated on 14/Mar/20

f(a) =(1/(√(10−a^2 ))){ln∣((((√2)−1)(a−1)+3−(√(10−a^2 )))/(((√2)−1)(a−1)+3+(√(10−a^2 ))))∣  −ln∣((3−(√(10−a^2 )))/(3+(√(10−a^2 ))))∣ rest calculus of f^′ (a) and f^′ (0)  ...

f(a)=110a2{ln(21)(a1)+310a2(21)(a1)+3+10a2ln310a23+10a2restcalculusoff(a)andf(0)...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com