Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 84581 by msup trace by abdo last updated on 14/Mar/20

let f(x) = e^(2x) ln(1−3x^2 )  1) calculate f^((0)) (x) and f^((n)) (0)  2) drvelopp f at integr serie  3) find ∫ f(x)dx

letf(x)=e2xln(13x2)1)calculatef(0)(x)andf(n)(0)2)drveloppfatintegrserie3)findf(x)dx

Commented by mathmax by abdo last updated on 18/Mar/20

1) f(x)=e^(2x) ln(1−3x^2 )⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (ln(1−3x^2 ))^((k)) (e^(2x) )^((n−k))   =2^n  e^(2x) ln(1−3x^2 )+Σ_(k=1) ^n  C_n ^k   (ln(1−3x^2 ))^((k))  2^(n−k)  e^(2x)   we have (ln(1−3x^2 ))^((1)) =((−6x)/(1−3x^2 )) =((6x)/(3x^2 −1)) =((2x)/(x^2 −(1/3)))  =(1/(x−(1/(√3))))+(1/(x+(1/(√3)))) ⇒(ln(1−3x^2 ))^((k)) =(((−1)^(k−1) (k−1)!)/((x−(1/(√3)))^k ))+(((−1)^(k−1) (k−1)!)/((x+(1/(√3)))^k ))  =(−1)^(k−1) (k−1)!{(((x+(1/(√3)))^k +(x−(1/(√3)))^k )/((x^2 −(1/3))^k ))} ⇒  f^((n)) (x)=2^n  e^(2x) ln(1−3x^2 )  +Σ_(k=1) ^n  (−1)^(k−1) (k−1)! C_n ^k    ×(((x+(1/(√3)))^k  +(x−(1/(√3)))^k )/((x^2 −(1/3))^k ))×2^(n−k)  e^(2x)   f^((n)) (0) =Σ_(k=1) ^n (−1)^(k−1) (k−1)! C_n ^k  ((((1/(√3)))^k  +(−(1/(√3)))^k )/((−(1/3))^k ))×2^(n−k)

1)f(x)=e2xln(13x2)f(n)(x)=k=0nCnk(ln(13x2))(k)(e2x)(nk)=2ne2xln(13x2)+k=1nCnk(ln(13x2))(k)2nke2xwehave(ln(13x2))(1)=6x13x2=6x3x21=2xx213=1x13+1x+13(ln(13x2))(k)=(1)k1(k1)!(x13)k+(1)k1(k1)!(x+13)k=(1)k1(k1)!{(x+13)k+(x13)k(x213)k}f(n)(x)=2ne2xln(13x2)+k=1n(1)k1(k1)!Cnk×(x+13)k+(x13)k(x213)k×2nke2xf(n)(0)=k=1n(1)k1(k1)!Cnk(13)k+(13)k(13)k×2nk

Commented by mathmax by abdo last updated on 18/Mar/20

2) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n    and f^((n)) (0) is knwn

2)f(x)=n=0f(n)(0)n!xnandf(n)(0)isknwn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com