Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 84680 by M±th+et£s last updated on 15/Mar/20

show that  ∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((log(xyz))/((1+x^2 )(1+y^2 )(1+z^2 ))) dx dy dz=((−3π^2 G)/(16))

showthat010101log(xyz)(1+x2)(1+y2)(1+z2)dxdydz=3π2G16

Answered by mind is power last updated on 15/Mar/20

=∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((ln(x)+ln(y)+ln(z))/((1+x^2 )(1+y^2 )(1+z^2 )))dxdydz  by Symetrie  =3∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((ln(x))/((1+x^2 )(1+y^2 )(1+z^2 )))dxdydz  =3∫_0 ^1 ∫_0 ^1 ((dydz)/((1+y^2 )(1+z^2 )))∫_0 ^1 ((ln(x))/((1+x^2 )))dx  −G=∫_0 ^1 ((ln(x))/(1+x^2 ))⇒  =−3G∫_0 ^1 ∫_0 ^1 ((dydz)/((1+y^2 )(1+z^2 )))=−3G∫_0 ^1 (dy/((1+y^2 )))∫_0 ^1 (dz/(1+z^2 ))  =−3G.((π/4))^2 =((−3π^2 G)/(16))

=010101ln(x)+ln(y)+ln(z)(1+x2)(1+y2)(1+z2)dxdydzbySymetrie=3010101ln(x)(1+x2)(1+y2)(1+z2)dxdydz=30101dydz(1+y2)(1+z2)01ln(x)(1+x2)dxG=01ln(x)1+x2=3G0101dydz(1+y2)(1+z2)=3G01dy(1+y2)01dz1+z2=3G.(π4)2=3π2G16

Commented by M±th+et£s last updated on 15/Mar/20

thank you so much sir

thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com