Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 84709 by M±th+et£s last updated on 15/Mar/20

∫((tan(x)))^(1/3)  dx

tan(x)3dx

Answered by MJS last updated on 15/Mar/20

∫((tan x))^(1/3)  dx=       [t=(tan x)^(2/3)  → dx=(3/2)(sin x)^(1/3) (cos x)^(5/3) dt]  =(3/2)∫(t/(t^3 +1))dt=(1/2)∫((t+1)/(t^2 −t+1))dt−(1/2)∫(dt/(t+1))=  =(1/4)∫((2t−1)/(t^2 −t+1))dt+(3/4)∫(dt/(t^2 −t+1))−(1/2)∫(dt/(t+1))=  =(1/4)ln (t^2 −t+1) +((√3)/2)arctan (((√3)/3)(2t−1)) −(1/2)ln (t+1) =  =(1/4)ln ((t^2 −t+1)/((t+1)^2 )) +((√3)/2)arctan (((√3)/3)(2t−1))   now insert t=(tan x)^(2/3)

tanx3dx=[t=(tanx)2/3dx=32(sinx)1/3(cosx)5/3dt]=32tt3+1dt=12t+1t2t+1dt12dtt+1==142t1t2t+1dt+34dtt2t+112dtt+1==14ln(t2t+1)+32arctan(33(2t1))12ln(t+1)==14lnt2t+1(t+1)2+32arctan(33(2t1))nowinsertt=(tanx)2/3

Commented by M±th+et£s last updated on 15/Mar/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com