Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 84766 by jagoll last updated on 15/Mar/20

∫ (dx/((16+9sin x)^2 ))

dx(16+9sinx)2

Commented by jagoll last updated on 16/Mar/20

∫ sec  x [ ((cos  x)/((16+9sin x)^2 ))] dx =    u = sec x ⇒ du = sec x tan x dx  v = (1/9)∫  ((d(16+9sin x))/((16+9sin x)^2 )) = −(1/(16+9sin x))  ⇒ −((sec x)/(16+9sin x)) + ∫  ((sec x tan x)/(16+9sin x)) dx   I_2  = ∫ ((sin x dx)/(cos^2 x (16+9sin x)))

secx[cosx(16+9sinx)2]dx=u=secxdu=secxtanxdxv=19d(16+9sinx)(16+9sinx)2=116+9sinxsecx16+9sinx+secxtanx16+9sinxdxI2=sinxdxcos2x(16+9sinx)

Commented by abdomathmax last updated on 16/Mar/20

let f(a) =∫  (dx/(a+9sinx))  we have f^′ (a)=−∫  (dx/((a+9sinx)^2 ))  ⇒∫  (dx/((a +9sinx)^2 )) =−f^′ (a)  f(a)=_(tan((x/2))=t)    ∫   ((2dt)/((1+t^2 )(a+9×((2t)/(1+t^2 )))))  =∫  ((2dt)/(a+at^2  +18t)) =∫ ((2dt)/(at^2  +18t +a))  Δ^′ =9^2 −a^2   we take a>9 ⇒t_1 =((−9+(√(81−a^2 )))/a)  t_2 =((−9−(√(81−a^2 )))/a) ⇒f(a)=∫  ((2dt)/(a(t−t_1 )(t−t_2 )))  =(2/(a×((2(√(81−a^2 )))/a)))∫ ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/(√(81−a^2 )))ln∣((t−t_1 )/(t−t_2 ))∣ +C  =(1/(√(81−a^2 )))ln∣((t−((−9+(√(81−a^2 )))/a))/(t−((−9−(√(81−a^2 )))/a)))∣ +C  =(1/(√(81−a^2 )))ln∣((at+9−(√(81−a^2 )))/(at+9+(√(81−a^2 ))))∣ +C  rest calculus of f^′ (a)...be continued...

letf(a)=dxa+9sinxwehavef(a)=dx(a+9sinx)2dx(a+9sinx)2=f(a)f(a)=tan(x2)=t2dt(1+t2)(a+9×2t1+t2)=2dta+at2+18t=2dtat2+18t+aΔ=92a2wetakea>9t1=9+81a2at2=981a2af(a)=2dta(tt1)(tt2)=2a×281a2a(1tt11tt2)dt=181a2lntt1tt2+C=181a2lnt9+81a2at981a2a+C=181a2lnat+981a2at+9+81a2+Crestcalculusoff(a)...becontinued...

Answered by TANMAY PANACEA last updated on 16/Mar/20

t=a+bsinx→sinx=((t−a)/b)  p=((cosx)/(a+bsinx))  (dp/dx)=(((a+bsinx)×−sinx−cosx(bcosx))/((a+bsinx)^2 ))  (dp/dx)=((−asinx−bsin^2 x−bcos^2 x)/((a+bsinx)^2 ))=((−(asinx+b))/((a+bsinx)^2 ))  now putting sinx=((t−a)/b)  −(dp/dx)=(((a×((t−a)/b)+b))/t^2 )=((at−a^2 +b^2 )/(bt^2 ))=(a/b)×(1/t)+((b^2 −a^2 )/t^2 )  −(dp/dx)=(a/b)×(1/t)+((b^2 −a^2 )/t^2 )  ((−1)/((b^2 −a^2 )))(dp/dx)=(a/(b(b^2 −a^2 )))×(1/((a+bsinx)))+(1/((a+bsinx)^2 ))  (1/(a^2 −b^2 ))×d(((cosx)/(a+bsinx)))=(a/(b(b^2 −a^2 )))×(dx/((a+bsinx)))+(dx/((a+bsinx)^2 ))  now ∫(dx/((a+bsinx)^2 ))  =(1/(a^2 −b^2 ))∫d(((cosx)/(a+bsinx)))−(a/(b(b^2 −a^2 )))∫(dx/(a+bsinx))  a=16   b=9  ∫(dx/((16+9sinx)^2 ))=(1/((16^2 −9^2 )))∫d(((cosx)/(16+9sinx)))+((16)/(9(16^2 −9^2 )))∫(dx/(16+9sinx))  now  ∫(dx/(16+9sinx))  k=tan(x/2)→dk=sec^2 (x/2)×(1/2)dx→((2dk)/(1+k^2 ))=dx  ∫((2dk)/((1+k^2 )))×(1/((16+9×((2k)/(1+k^2 )))))  2∫(dk/(16+16k^2 +18k))=(1/8)∫(dk/(k^2 +((9k)/8)+1))=(1/8)∫(dk/(k^2 +2.k.(9/(16))+((9/(16)))^2 +1−((9/(16)))^2 ))  =(1/8)∫(dk/((k+(9/(16)))^2 +((175)/(16^2 ))))=(1/8)×∫(dk/((k+(9/(16)))^2 +(((5(√7))/(16)))^2 ))  =(1/8)×((16)/(5(√7)))tan^(−1) (((k+(9/(16)))/((5(√7))/(16))))=(2/(5(√7)))tan^(−1) (((16k+9)/(5(√7))))  so answer is  (1/((16^2 −9^2 )))×(((cosx)/(16+9sinx)))+((16)/(9(16^2 −9^2 )))×(2/(5(√7)))tan^(−1) (((16tan(x/2)+9)/(5(√7))))+c

t=a+bsinxsinx=tabp=cosxa+bsinxdpdx=(a+bsinx)×sinxcosx(bcosx)(a+bsinx)2dpdx=asinxbsin2xbcos2x(a+bsinx)2=(asinx+b)(a+bsinx)2nowputtingsinx=tabdpdx=(a×tab+b)t2=ata2+b2bt2=ab×1t+b2a2t2dpdx=ab×1t+b2a2t21(b2a2)dpdx=ab(b2a2)×1(a+bsinx)+1(a+bsinx)21a2b2×d(cosxa+bsinx)=ab(b2a2)×dx(a+bsinx)+dx(a+bsinx)2nowdx(a+bsinx)2=1a2b2d(cosxa+bsinx)ab(b2a2)dxa+bsinxa=16b=9dx(16+9sinx)2=1(16292)d(cosx16+9sinx)+169(16292)dx16+9sinxnowdx16+9sinxk=tanx2dk=sec2x2×12dx2dk1+k2=dx2dk(1+k2)×1(16+9×2k1+k2)2dk16+16k2+18k=18dkk2+9k8+1=18dkk2+2.k.916+(916)2+1(916)2=18dk(k+916)2+175162=18×dk(k+916)2+(5716)2=18×1657tan1(k+9165716)=257tan1(16k+957)soansweris1(16292)×(cosx16+9sinx)+169(16292)×257tan1(16tanx2+957)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com