All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 84766 by jagoll last updated on 15/Mar/20
∫dx(16+9sinx)2
Commented by jagoll last updated on 16/Mar/20
∫secx[cosx(16+9sinx)2]dx=u=secx⇒du=secxtanxdxv=19∫d(16+9sinx)(16+9sinx)2=−116+9sinx⇒−secx16+9sinx+∫secxtanx16+9sinxdxI2=∫sinxdxcos2x(16+9sinx)
Commented by abdomathmax last updated on 16/Mar/20
letf(a)=∫dxa+9sinxwehavef′(a)=−∫dx(a+9sinx)2⇒∫dx(a+9sinx)2=−f′(a)f(a)=tan(x2)=t∫2dt(1+t2)(a+9×2t1+t2)=∫2dta+at2+18t=∫2dtat2+18t+aΔ′=92−a2wetakea>9⇒t1=−9+81−a2at2=−9−81−a2a⇒f(a)=∫2dta(t−t1)(t−t2)=2a×281−a2a∫(1t−t1−1t−t2)dt=181−a2ln∣t−t1t−t2∣+C=181−a2ln∣t−−9+81−a2at−−9−81−a2a∣+C=181−a2ln∣at+9−81−a2at+9+81−a2∣+Crestcalculusoff′(a)...becontinued...
Answered by TANMAY PANACEA last updated on 16/Mar/20
t=a+bsinx→sinx=t−abp=cosxa+bsinxdpdx=(a+bsinx)×−sinx−cosx(bcosx)(a+bsinx)2dpdx=−asinx−bsin2x−bcos2x(a+bsinx)2=−(asinx+b)(a+bsinx)2nowputtingsinx=t−ab−dpdx=(a×t−ab+b)t2=at−a2+b2bt2=ab×1t+b2−a2t2−dpdx=ab×1t+b2−a2t2−1(b2−a2)dpdx=ab(b2−a2)×1(a+bsinx)+1(a+bsinx)21a2−b2×d(cosxa+bsinx)=ab(b2−a2)×dx(a+bsinx)+dx(a+bsinx)2now∫dx(a+bsinx)2=1a2−b2∫d(cosxa+bsinx)−ab(b2−a2)∫dxa+bsinxa=16b=9∫dx(16+9sinx)2=1(162−92)∫d(cosx16+9sinx)+169(162−92)∫dx16+9sinxnow∫dx16+9sinxk=tanx2→dk=sec2x2×12dx→2dk1+k2=dx∫2dk(1+k2)×1(16+9×2k1+k2)2∫dk16+16k2+18k=18∫dkk2+9k8+1=18∫dkk2+2.k.916+(916)2+1−(916)2=18∫dk(k+916)2+175162=18×∫dk(k+916)2+(5716)2=18×1657tan−1(k+9165716)=257tan−1(16k+957)soansweris1(162−92)×(cosx16+9sinx)+169(162−92)×257tan−1(16tanx2+957)+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com