Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 84810 by M±th+et£s last updated on 16/Mar/20

∫_0 ^π ln(((1+b cos(x))/(1+a sin(x)))) dx  −1<a<b<1

0πln(1+bcos(x)1+asin(x))dx 1<a<b<1

Commented bymathmax by abdo last updated on 16/Mar/20

∫_0 ^π ln(((1+bcosx)/(1+asinx)))dx =g(b)−f(a) with g(b)=∫_0 ^π ln(1+bcosx)dx  and f(a) =∫_0 ^π ln(1+asinx)dx  we have g^′ (b)=∫_0 ^π  ((cosx)/(1+bcosx))dx  =(1/b)∫_0 ^π  ((bcosx+1−1)/(1+bcosx))dx =(π/b)−(1/b)∫_0 ^π  (dx/(1+bcosx))  ∫_0 ^π  (dx/(1+bcosx)) =_(tan((x/2))=t)   ∫_0 ^∞  (1/(1+b((1−t^2 )/(1+t^2 ))))×((2dt)/(1+t^2 )) =∫_0 ^∞  ((2dt)/(1+t^2  +b−bt^2 ))  =∫_0 ^∞   ((2dt)/((1−b)t^2  +1+b)) =(2/(1−b))∫_0 ^∞   (dt/(t^2  +((1+b)/(1−b))))  =_(t=(√((1+b)/(1−b)))u)   (2/(1−b))×((1−b)/(1+b))∫_0 ^∞    (1/(1+u^2 ))(√((1+b)/(1−b)))du  =(2/(√(1−b^2 )))×(π/2) =(π/(√(1−b^2 ))) ⇒g^′ (b)=(π/b)−(π/(b(√(1−b^2 )))) ⇒  g(b)=πln∣b∣−π ∫_b ^1  (dx/(x(√(1−x^2 )))) +K  g(1) =K  K=∫_0 ^π ln(1+cosx)dx ⇒g(b) =πln∣b∣−π ∫_b ^1  (dx/(x(√(1−x^2 )))) +∫_0 ^π ln(1+cosx)dx  ∫_b ^1  (dx/(x(√(1−x^2 )))) =_(x=sinα)    ∫_(arcsinb) ^(π/2)  ((cosα dα)/(sinα.cosα)) =∫_(arcsinb) ^(π/2)  (dα/(sinα))  =_(tan((α/2))=z)    ∫_(tan(((arcsinb)/2))) ^1   ((2dz)/((1+z^2 )((2z)/(1+z^2 )))) =∫_(tan(((arcsinb)/2))) ^1    (dz/z)  =[ln∣z∣]_(tan(((arcsinb)/2))) ^1  =−ln∣tan(((arcsinb)/2))) ⇒  g(b)=πln∣b∣+πln∣tan(((arcsinb)/2))∣+∫_0 ^π ln(1+cosx)dx  ∫_0 ^π ln(1+cosx)dx =∫_0 ^π ln(2cos^2 ((x/2)))dx  =πln(2)+2∫_0 ^π  ln(cos((x/2)))dx    ((x/2)=u)  =πln(2)+2 ∫_0 ^(π/2) ln(cosu)(2du)  =πln(2)+4(−(π/2)ln(2)) =−πln(2) ⇒  g(b)=π(ln∣b∣−ln(2))+πln∣tan(((arcsinb)/2))∣...be continued

0πln(1+bcosx1+asinx)dx=g(b)f(a)withg(b)=0πln(1+bcosx)dx andf(a)=0πln(1+asinx)dxwehaveg(b)=0πcosx1+bcosxdx =1b0πbcosx+111+bcosxdx=πb1b0πdx1+bcosx 0πdx1+bcosx=tan(x2)=t011+b1t21+t2×2dt1+t2=02dt1+t2+bbt2 =02dt(1b)t2+1+b=21b0dtt2+1+b1b =t=1+b1bu21b×1b1+b011+u21+b1bdu =21b2×π2=π1b2g(b)=πbπb1b2 g(b)=πlnbπb1dxx1x2+K g(1)=K K=0πln(1+cosx)dxg(b)=πlnbπb1dxx1x2+0πln(1+cosx)dx b1dxx1x2=x=sinαarcsinbπ2cosαdαsinα.cosα=arcsinbπ2dαsinα =tan(α2)=ztan(arcsinb2)12dz(1+z2)2z1+z2=tan(arcsinb2)1dzz =[lnz]tan(arcsinb2)1=lntan(arcsinb2)) g(b)=πlnb+πlntan(arcsinb2)+0πln(1+cosx)dx 0πln(1+cosx)dx=0πln(2cos2(x2))dx =πln(2)+20πln(cos(x2))dx(x2=u) =πln(2)+20π2ln(cosu)(2du) =πln(2)+4(π2ln(2))=πln(2) g(b)=π(lnbln(2))+πlntan(arcsinb2)...becontinued

Terms of Service

Privacy Policy

Contact: info@tinkutara.com