All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 84810 by M±th+et£s last updated on 16/Mar/20
∫0πln(1+bcos(x)1+asin(x))dx −1<a<b<1
Commented bymathmax by abdo last updated on 16/Mar/20
∫0πln(1+bcosx1+asinx)dx=g(b)−f(a)withg(b)=∫0πln(1+bcosx)dx andf(a)=∫0πln(1+asinx)dxwehaveg′(b)=∫0πcosx1+bcosxdx =1b∫0πbcosx+1−11+bcosxdx=πb−1b∫0πdx1+bcosx ∫0πdx1+bcosx=tan(x2)=t∫0∞11+b1−t21+t2×2dt1+t2=∫0∞2dt1+t2+b−bt2 =∫0∞2dt(1−b)t2+1+b=21−b∫0∞dtt2+1+b1−b =t=1+b1−bu21−b×1−b1+b∫0∞11+u21+b1−bdu =21−b2×π2=π1−b2⇒g′(b)=πb−πb1−b2⇒ g(b)=πln∣b∣−π∫b1dxx1−x2+K g(1)=K K=∫0πln(1+cosx)dx⇒g(b)=πln∣b∣−π∫b1dxx1−x2+∫0πln(1+cosx)dx ∫b1dxx1−x2=x=sinα∫arcsinbπ2cosαdαsinα.cosα=∫arcsinbπ2dαsinα =tan(α2)=z∫tan(arcsinb2)12dz(1+z2)2z1+z2=∫tan(arcsinb2)1dzz =[ln∣z∣]tan(arcsinb2)1=−ln∣tan(arcsinb2))⇒ g(b)=πln∣b∣+πln∣tan(arcsinb2)∣+∫0πln(1+cosx)dx ∫0πln(1+cosx)dx=∫0πln(2cos2(x2))dx =πln(2)+2∫0πln(cos(x2))dx(x2=u) =πln(2)+2∫0π2ln(cosu)(2du) =πln(2)+4(−π2ln(2))=−πln(2)⇒ g(b)=π(ln∣b∣−ln(2))+πln∣tan(arcsinb2)∣...becontinued
Terms of Service
Privacy Policy
Contact: info@tinkutara.com