All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 84862 by Jakir Sarif Mondal last updated on 25/Mar/20
∫1000[tan−1x]dx=?−JakirSarifMondal.
Commented by mr W last updated on 17/Mar/20
forx⩾0therangeoftan−1(x)is[0,π2).for0⩽x<tan1:0⩽tan−1x<1⇒[tan−1x]=0fortan1⩽x<+∞:1⩽tan−1x<π2<2⇒[tan−1x]=1∫0100[tan−1x]dx=∫0tan1[tan−1x]dx+∫tan1100[tan−1x]dx=∫0tan10dx+∫tan11001dx=0+(100−tan1)=100−tan1
Answered by Rio Michael last updated on 16/Mar/20
letu=tan−1xanddvdx=1dudx=11+x2andv=x⇒∫1000tan−1xdx=[xtan−1x]0100−∫1000x1+x2dx=100tan−1100−12ln(1+x2)∣1000=100tan−1100−12ln(1+1002)
Answered by TANMAY PANACEA last updated on 17/Mar/20
tan−1x=1→x=tan1∫0tan1[tan−1x]dx+∫tan1100[tan−1x]dx=∫0tan10×dx+1×∣x∣tan1100=(100−tan1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com