Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 84884 by bshahid010@gmail.com last updated on 17/Mar/20

Commented by mathmax by abdo last updated on 17/Mar/20

A =∫  (dx/((2x−1)(√(x^2 +x+3)))) changement 2x−1=t give x=((t+1)/2)  A =∫  (dt/(2t(√((((t+1)^2 )/4)+((t+1)/2)+3)))) =∫  (dt/(2t(√((t^2 +2t+1+2t+2+12)/4))))  =∫  (dt/(t(√(t^2  +4t+15)))) =∫  (dt/(t(√((t+2)^2 +11))))  =_(t+2=(√(11))sh(u))      ∫  (((√(11))ch(u)dt)/(((√(11))sh(u)−2)(√(11))ch(u)))  =∫  (du/((√(11))×((e^u −e^(−u) )/2)−2)) =∫ ((2du)/((√(11))e^u −(√(11))e^(−u) −4))  =_(e^u  =α)      ∫   ((2dα)/(α((√(11))α−(√(11))α^(−1) −4))) =2 ∫  (dα/((√(11))α^2 −4α−(√(11))))  Δ^′  =4+11 =15 ⇒α_1 =((2+(√(15)))/(√(11))) and α_2 =((2−(√(15)))/(√(11))) ⇒  A =2 ∫  (dα/((√(11))(α−α_1 )(α−α_2 )))  =(2/((√(11))×((2(√(15)))/(√(11))))) ∫((1/(α−α_1 ))−(1/(α−α_2 )))dα =(1/(√(15)))ln∣((α−α_1 )/(α−α_2 ))∣ +C  =(1/(√(15)))ln∣((e^u −α_1 )/(e^u −α_2 ))∣ +C  we have u=argsh(((t+2)/(√(11)))) =argsh(((2x−1+2)/(√(11))))  =ln(((2x+1)/(√(11)))+(√(1+(((2x+1)/(√(11))))^2 ))) ⇒  A =(1/(√(15)))ln∣((((2x+1)/(√(11)))+(√(1+(((2x+1)/(√(11))))^2 ))−((2+(√(15)))/(√(11))))/(((2x+1)/(√(11)))+(√(1+(((2x+1)/(√(11))))^2 −((2−(√(15)))/(√(11)))))))∣ +C

A=dx(2x1)x2+x+3changement2x1=tgivex=t+12A=dt2t(t+1)24+t+12+3=dt2tt2+2t+1+2t+2+124=dttt2+4t+15=dtt(t+2)2+11=t+2=11sh(u)11ch(u)dt(11sh(u)2)11ch(u)=du11×eueu22=2du11eu11eu4=eu=α2dαα(11α11α14)=2dα11α24α11Δ=4+11=15α1=2+1511andα2=21511A=2dα11(αα1)(αα2)=211×21511(1αα11αα2)dα=115lnαα1αα2+C=115lneuα1euα2+Cwehaveu=argsh(t+211)=argsh(2x1+211)=ln(2x+111+1+(2x+111)2)A=115ln2x+111+1+(2x+111)22+15112x+111+1+(2x+111)221511+C

Answered by MJS last updated on 17/Mar/20

∫(dx/((2x−1)(√(x^2 +x+3))))=       [t=(√(x^2 +x+3)) → ((2(√(x^2 +x+3)))/(2x+1))dt]  =∫(dt/(2t^2 −((11)/2)−(√(4t^2 −11))))=       [t=((√(11))/2)cosh ln u =(((√(11))(u^2 +1))/(4u)) ⇔ u=((2t+(√(4t^2 −11)))/(√(11))) → dt=((√(11(4t^2 −11)))/(2(2t+(√(4t^2 −11)))))du]  =(2/(√(11)))∫(du/(u^2 −(4/(√(11)))u−1))=  =(1/(√(15)))∫(du/(u−((2+(√(15)))/(√(11)))))−(1/(√(15)))∫(du/(u−((2−(√(15)))/(√(11)))))  and now it′s easy

dx(2x1)x2+x+3=[t=x2+x+32x2+x+32x+1dt]=dt2t21124t211=[t=112coshlnu=11(u2+1)4uu=2t+4t21111dt=11(4t211)2(2t+4t211)du]=211duu2411u1==115duu2+1511115duu21511andnowitseasy

Answered by TANMAY PANACEA last updated on 17/Mar/20

2x−1=(1/t)→2dx=((−1)/t^2 )dt  2x=(1+(1/t))→x=(1/2)(1+(1/t))  dx=((−dt)/(2t^2 ))  ∫((−dt)/(2t^2 ×(1/t)(√((1/4)(1+(1/t))^2 +(1/2)(1+(1/t))+3))))  ∫((−dt)/(2t(√((1/4)(1+(2/t)+(1/t^2 ))+(1/2)+(1/(2t))+3))))  ((−1)/2)∫(dt/(t(√((1/4)+(1/(2t))+(1/(4t^2 ))+(1/2)+(1/(2t))+3))))  ((−1)/2)∫(dt/(t(√((t^2 +2t+1+2t^2 +2t+12t^2 )/(4t^2 )))))  ((−1)/2)∫((2tdt)/(t(√(15t^2 +4t+1))))  −∫(dt/(√(15(t^2 +((4t)/(15))+(1/(15))))))  ((−1)/(√(15)))∫(dt/(√((t+(2/(15)))^2 +(1/(15))−(4/(15^2 )))))  ((−1)/(√(15)))∫(dt/(√((t+(2/(15)))^2 +(((√(11))/(15)))^2 )))  ((−1)/(√(15)))×ln{(t+(2/(15)))+(√((t+(2/(15)))^2 +(((√(11))/(15)))^2 )) }+C  now put t=(1/(2x−1))

2x1=1t2dx=1t2dt2x=(1+1t)x=12(1+1t)dx=dt2t2dt2t2×1t14(1+1t)2+12(1+1t)+3dt2t14(1+2t+1t2)+12+12t+312dtt14+12t+14t2+12+12t+312dttt2+2t+1+2t2+2t+12t24t2122tdtt15t2+4t+1dt15(t2+4t15+115)115dt(t+215)2+1154152115dt(t+215)2+(1115)2115×ln{(t+215)+(t+215)2+(1115)2}+Cnowputt=12x1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com