Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 84909 by naka3546 last updated on 17/Mar/20

Find   all  solutions  of  (x, y)  such  that          x^3  − 3xy^2   =  2010          y^3  − 3x^2 y  =  2009  x, y  ∈  R

Findallsolutionsof(x,y)suchthatx33xy2=2010y33x2y=2009x,yR

Commented by john santu last updated on 17/Mar/20

x^3 −3xy^2  = 2010 [÷y^3  ]   ((x/y))^3 −3((x/y)) = ((2010)/y^3 )  y^3 −3x^2 y = 2009 [ ÷y^3  ]  1−3((x/y))^2  = ((2009)/y^3 )  let (x/y) = u ⇒ u^3 −3u = ((2010)/y^3 )  1−3u^2  = ((2009)/y^3 )

x33xy2=2010[÷y3](xy)33(xy)=2010y3y33x2y=2009[÷y3]13(xy)2=2009y3letxy=uu33u=2010y313u2=2009y3

Commented by john santu last updated on 17/Mar/20

⇒ (1/y^3 ) = (1/y^3 ) , ((u^3 −3u)/(2010)) = ((1−3u^2 )/(2009))  2009u^3 −6027u= 2010−6030u^2   2009u^3 +6030u^2 −6027u−2010 = 0

1y3=1y3,u33u2010=13u220092009u36027u=20106030u22009u3+6030u26027u2010=0

Commented by MJS last updated on 17/Mar/20

no “nice” solution

nonicesolution

Commented by john santu last updated on 17/Mar/20

what the ′nice′ solution?

whatthenicesolution?

Commented by MJS last updated on 17/Mar/20

we can only approximate  no solution of the shape a+(√b) or similar

wecanonlyapproximatenosolutionoftheshapea+borsimilar

Answered by MJS last updated on 17/Mar/20

x^3 −3xy^2 =2010  y^3 −3x^2 y=2009  let y=px  (1−3p^2 )x^3 =2010  (p^3 −3p)x^3 =2009  ⇒  ((2010)/(1−3p^2 ))=((2009)/(p^3 −3p))  ⇒  p^3 +((2009)/(670))p^2 −3p−((2009)/(2010))=0  p_1 ≈−3.73081  p_2 ≈−.267860  p_3 ≈1.00017  ⇒  x_1 ≈−3.66718∧y_1 ≈13.6815  x_2 ≈13.6832∧y_2 ≈−3.66491  x_3 ≈−10.0150∧y_3 ≈−10.0166

x33xy2=2010y33x2y=2009lety=px(13p2)x3=2010(p33p)x3=2009201013p2=2009p33pp3+2009670p23p20092010=0p13.73081p2.267860p31.00017x13.66718y113.6815x213.6832y23.66491x310.0150y310.0166

Answered by mind is power last updated on 19/Mar/20

−ix^3 +3ixy^2 =−2010i  y^3 +3(ix)^2 y=2009  ⇒(y+ix)^3 =2009−2010i  (y+ix)^3 =(√(2009^2 +2010^2 ))e^(−iarctan(((2010)/(2009)))+2ikπ) =re^(iθ_k )   y=r^(1/3) cos((θ_k /3))  x=r^(1/3) sin((θ_k /3))   reel solution  y_k =((√(2009^2 +2010^2 )))^(1/3) .cos((1/3)arctan(((2010)/(2009)))+((2kπ)/3))  x_k =((√(2009^2 +2010^2 )))^(1/3) sin(−(1/3)arctan(((2010)/(2009)))+((2kπ)/3)),k∈{0,1,2}

ix3+3ixy2=2010iy3+3(ix)2y=2009(y+ix)3=20092010i(y+ix)3=20092+20102eiarctan(20102009)+2ikπ=reiθky=r13cos(θk3)x=r13sin(θk3)reelsolutionyk=(20092+20102)13.cos(13arctan(20102009)+2kπ3)xk=(20092+20102)13sin(13arctan(20102009)+2kπ3),k{0,1,2}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com