Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 84956 by M±th+et£s last updated on 17/Mar/20

show that   ∫_0 ^(+∞) (1/(x^4 +2x^2 cos(((2π)/5))+1)) dx=(π/(2φ))

showthat0+1x4+2x2cos(2π5)+1dx=π2ϕ

Commented by mathmax by abdo last updated on 18/Mar/20

2I =∫_(−∞) ^(+∞)  (dx/(x^4  +2cos(((2π)/5))x^2  +1)) let W(z)=(1/(z^4  +2cos(((2π)/5))z^2  +1))  poles of W?  z^4  +2cos(((2π)/5))z^2  +1=0 ⇒t^2 +2cos(((2π)/5))t+1=0  (t=z^2 )  Δ^′ =cos^2 (((2π)/5))−1 =(isin(((2π)/5)))^2  ⇒t_1 =−cos(((2π)/5))+isin(((2π)/5))  =e^(i(π−((2π)/5)))  =e^(i(((3π)/5)))    t_2 =e^(i(π+((2π)/5))) =e^(i(((7π)/5)))  ⇒W(z)=(1/((z^2 −e^(i((3π)/5)) )(z^2 −e^(i(((7π)/5))) )))  =(1/((z−e^(i((3π)/(10))) )(z+e^(i((3π)/(10))) )(z−e^(i(((7π)/(10)))) )(z+e^((i7π)/(10)) )))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ{Res(W,e^((i3π)/(10)) )+Res(W,e^(i((7π)/(10))) )}...be continued...

2I=+dxx4+2cos(2π5)x2+1letW(z)=1z4+2cos(2π5)z2+1polesofW?z4+2cos(2π5)z2+1=0t2+2cos(2π5)t+1=0(t=z2)Δ=cos2(2π5)1=(isin(2π5))2t1=cos(2π5)+isin(2π5)=ei(π2π5)=ei(3π5)t2=ei(π+2π5)=ei(7π5)W(z)=1(z2ei3π5)(z2ei(7π5))=1(zei3π10)(z+ei3π10)(zei(7π10))(z+ei7π10)+W(z)dz=2iπ{Res(W,ei3π10)+Res(W,ei7π10)}...becontinued...

Commented by M±th+et£s last updated on 18/Mar/20

thank you sir

thankyousir

Commented by mathmax by abdo last updated on 18/Mar/20

you are welcome

youarewelcome

Answered by mind is power last updated on 18/Mar/20

∫_0 ^(+∞) (dx/((x^2 −e^(i((2π)/5)) )(x^2 −e^((8iπ)/5) )))  =(1/2)∫_(−∞) ^(+∞) (dz/((z^2 −e^((2iπ)/5) )(z^2 −e^((8iπ)/5) )))  =iπ.{(1/(2e^(i(π/5)) (e^((2iπ)/5) −e^(−((2iπ)/5)) )))+(1/((e^(i((8π)/5)) −e^((2iπ)/5) ).2e^(i((4π)/5)) ))}  =iπ.((e^(−((iπ)/5)) /(4isin(((2π)/5))))−(e^(−((4iπ)/5)) /(4isin(((2π)/5)))))  =(π/(4sin(((2π)/5))))(2cos((π/5)))=(π/(4sin((π/5))))=(π/(2∅))

0+dx(x2ei2π5)(x2e8iπ5)=12+dz(z2e2iπ5)(z2e8iπ5)=iπ.{12eiπ5(e2iπ5e2iπ5)+1(ei8π5e2iπ5).2ei4π5}=iπ.(eiπ54isin(2π5)e4iπ54isin(2π5))=π4sin(2π5)(2cos(π5))=π4sin(π5)=π2

Commented by M±th+et£s last updated on 18/Mar/20

god bless you sir

godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com